sdRNA-D43 derived from small nucleolar RNA snoRD43 improves chondrocyte senescence and osteoarthritis progression by negatively regulating PINK1/Parkin-mediated mitophagy pathway via dual-targeting NRF1 and WIPI2.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2025-02-11 DOI:10.1186/s12964-024-01975-2
Zengfa Deng, Changzhao Li, Shu Hu, Yanlin Zhong, Wei Li, Zhencan Lin, Xiaolin Mo, Ming Li, Dongliang Xu, Dianbo Long, Guping Mao, Yan Kang
{"title":"sdRNA-D43 derived from small nucleolar RNA snoRD43 improves chondrocyte senescence and osteoarthritis progression by negatively regulating PINK1/Parkin-mediated mitophagy pathway via dual-targeting NRF1 and WIPI2.","authors":"Zengfa Deng, Changzhao Li, Shu Hu, Yanlin Zhong, Wei Li, Zhencan Lin, Xiaolin Mo, Ming Li, Dongliang Xu, Dianbo Long, Guping Mao, Yan Kang","doi":"10.1186/s12964-024-01975-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chondrocyte senescence play an essential role in osteoarthritis (OA) progression. Recent studies have shown that snoRNA-derived RNA fragments (sdRNAs) are novel regulators of post-transcriptional gene expression. However, the expression profiles and their role in post-transcriptional gene regulation in chondrocyte senescence and OA progression is unknown. Here, we determined sdRNAs expression profile and explored sdRNA-D43 role in OA and its mechanism.</p><p><strong>Methods: </strong>We used qPCR arrays to determine sdRNAs expression in the chondrocytes of areas undamaged and damaged of the three knee OA samples. SdRNA-D43 expression was determined using quantitative reverse transcription-polymerase chain reaction and in situ hybridization. Then, bioinformatics analysis was conducted on the target genes that might be silenced by sdRNA-D43. Primary chondrocytes of damaged regions of knee OA samples were transfected with a sdRNA-D43 inhibitor or mimic to determine their functions, including in relation to mitophagy and chondrocyte senescence. Argonaute2-RNA immunoprecipitation and luciferase reporter assays were conducted to determine the target gene of sdRNA-D43. In a rat OA model induced by monosodium iodoacetate, adeno-associated virus sh-rat-sdRNA-D43 was injected into the knee joint cavity to assess its in vivo effects.</p><p><strong>Results: </strong>sdRNA-D43 expression were upregulated in damaged areas of knee OA cartilage with increased senescent chondrocytes. sdRNA-D43 inhibited mitophagy and promoted chondrocytes senescence during OA progression. Mechanistically, sdRNA-D43 silenced the expression of both NRF1 and WIPI2 by binding to their 3'-UTR in an Argonaute2‑dependent manner, which inhibited PINK1/Parkin-mediated pathway. Additionally, injection of AAV-sh-sdRNA-D43 alleviated the progression of OA in a monosodium iodoacetate-induced rat model.</p><p><strong>Conclusion: </strong>Our results reveal an important role for a novel sdRNA-D43 in OA progression. sdRNA-D43 improves chondrocyte senescence by negatively regulating PINK1/Parkin-mediated mitophagy pathway via dual-targeting NRF1 and WIPI2, which provide a potential therapeutic strategy for OA treatment.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"77"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01975-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chondrocyte senescence play an essential role in osteoarthritis (OA) progression. Recent studies have shown that snoRNA-derived RNA fragments (sdRNAs) are novel regulators of post-transcriptional gene expression. However, the expression profiles and their role in post-transcriptional gene regulation in chondrocyte senescence and OA progression is unknown. Here, we determined sdRNAs expression profile and explored sdRNA-D43 role in OA and its mechanism.

Methods: We used qPCR arrays to determine sdRNAs expression in the chondrocytes of areas undamaged and damaged of the three knee OA samples. SdRNA-D43 expression was determined using quantitative reverse transcription-polymerase chain reaction and in situ hybridization. Then, bioinformatics analysis was conducted on the target genes that might be silenced by sdRNA-D43. Primary chondrocytes of damaged regions of knee OA samples were transfected with a sdRNA-D43 inhibitor or mimic to determine their functions, including in relation to mitophagy and chondrocyte senescence. Argonaute2-RNA immunoprecipitation and luciferase reporter assays were conducted to determine the target gene of sdRNA-D43. In a rat OA model induced by monosodium iodoacetate, adeno-associated virus sh-rat-sdRNA-D43 was injected into the knee joint cavity to assess its in vivo effects.

Results: sdRNA-D43 expression were upregulated in damaged areas of knee OA cartilage with increased senescent chondrocytes. sdRNA-D43 inhibited mitophagy and promoted chondrocytes senescence during OA progression. Mechanistically, sdRNA-D43 silenced the expression of both NRF1 and WIPI2 by binding to their 3'-UTR in an Argonaute2‑dependent manner, which inhibited PINK1/Parkin-mediated pathway. Additionally, injection of AAV-sh-sdRNA-D43 alleviated the progression of OA in a monosodium iodoacetate-induced rat model.

Conclusion: Our results reveal an important role for a novel sdRNA-D43 in OA progression. sdRNA-D43 improves chondrocyte senescence by negatively regulating PINK1/Parkin-mediated mitophagy pathway via dual-targeting NRF1 and WIPI2, which provide a potential therapeutic strategy for OA treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Information for Readers
IF 3.2 2区 医学Journal of vascular surgery. Venous and lymphatic disordersPub Date : 2021-03-01 DOI: 10.1016/S2213-333X(21)00007-X
Information for readers
IF 5.9 2区 计算机科学IEEE Transactions on ReliabilityPub Date : 1972-03-01 DOI: 10.1109/TR.1972.5215966
Information for Readers and readers
IF 29.4 1区 医学GastroenterologyPub Date : 2005-11-01 DOI: 10.1053/S0016-5085(05)01809-3
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
BDNF secreted by mesenchymal stem cells improves aged oocyte quality and development potential by activating the ERK1/2 pathway. MDA5 protein mediating persistent ER stress/unfolded protein response contributes to endothelial-mesenchymal-transition of lung microvascular endothelial cell in dermatomyositis. Platelet glycoprotein VI promotes folic acid-induced acute kidney injury through interaction with tubular epithelial cell-derived galectin-3. Cancer‑associated fibroblasts: a pivotal regulator of tumor microenvironment in the context of radiotherapy. Induction of LY6E regulates interleukin-1β production, potentially contributing to the immunopathogenesis of systemic lupus erythematosus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1