Adsorption and Corrosion Inhibition Evaluation of Agro-Industrial Waste-Derived Sustainable Carbon Dots for Corrosion Protection of Q235 Steel in 5% HCl
Ruby Aslam, Jinmei Zhao, Jialin Chen, Qihui Wang, Chandrabhan Verma, Akram Alfantazi, Yi Sun, Zhitao Yan
{"title":"Adsorption and Corrosion Inhibition Evaluation of Agro-Industrial Waste-Derived Sustainable Carbon Dots for Corrosion Protection of Q235 Steel in 5% HCl","authors":"Ruby Aslam, Jinmei Zhao, Jialin Chen, Qihui Wang, Chandrabhan Verma, Akram Alfantazi, Yi Sun, Zhitao Yan","doi":"10.1021/acs.langmuir.4c04571","DOIUrl":null,"url":null,"abstract":"Nitrogen and sulfur codoped carbon dots (SB-CDs) were developed from sugar cane bagasse, an agro-industrial waste, and evaluated as an eco-friendly corrosion inhibitor for Q235B steel in HCl solution. The surface coverage of the adsorbed SB-CDs is strongly influenced by immersion time (6 and 72 h, both in static and dynamic conditions) and inhibitor concentration (20–200 mg/L). Maximum and uniform coverage is achieved with 150 mg/L SB-CDs. At this concentration, SB-CDs demonstrated a high inhibition efficiency of 96% after 6 h of immersion, maintaining effectiveness at 94 and 92% under static and dynamic conditions, respectively, at 72 h of immersion. Electrochemical studies showed that polarization resistance (<i>R</i><sub>p</sub>) increased, and corrosion current density (<i>I</i><sub>corr</sub>) of steel decreased in the presence of SB-CDs compared to uninhibited specimens, confirming SB-CDs’ adsorption on metal surfaces. Additionally, surface analysis using scanning electron microscopy and atomic force microscopy confirmed the improved surface morphology and fewer corrosion features, supporting the formation of a protective film. Energy-dispersive X-ray and X-ray photoelectron spectroscopy analyses further confirm the formation of a protective layer by SB-CDs, attributed to the interaction of nitrogen-, oxygen-, and sulfur-containing functional groups with the steel surface. Therefore, a homogeneously adsorbed inhibitor layer entirely blocks the formation of iron chloride/oxide/hydroxide intermediates, ensuring high corrosion inhibition efficiency of Q235B steel in corrosive environments.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"17 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04571","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen and sulfur codoped carbon dots (SB-CDs) were developed from sugar cane bagasse, an agro-industrial waste, and evaluated as an eco-friendly corrosion inhibitor for Q235B steel in HCl solution. The surface coverage of the adsorbed SB-CDs is strongly influenced by immersion time (6 and 72 h, both in static and dynamic conditions) and inhibitor concentration (20–200 mg/L). Maximum and uniform coverage is achieved with 150 mg/L SB-CDs. At this concentration, SB-CDs demonstrated a high inhibition efficiency of 96% after 6 h of immersion, maintaining effectiveness at 94 and 92% under static and dynamic conditions, respectively, at 72 h of immersion. Electrochemical studies showed that polarization resistance (Rp) increased, and corrosion current density (Icorr) of steel decreased in the presence of SB-CDs compared to uninhibited specimens, confirming SB-CDs’ adsorption on metal surfaces. Additionally, surface analysis using scanning electron microscopy and atomic force microscopy confirmed the improved surface morphology and fewer corrosion features, supporting the formation of a protective film. Energy-dispersive X-ray and X-ray photoelectron spectroscopy analyses further confirm the formation of a protective layer by SB-CDs, attributed to the interaction of nitrogen-, oxygen-, and sulfur-containing functional groups with the steel surface. Therefore, a homogeneously adsorbed inhibitor layer entirely blocks the formation of iron chloride/oxide/hydroxide intermediates, ensuring high corrosion inhibition efficiency of Q235B steel in corrosive environments.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).