{"title":"Multiband embeddings of light curves","authors":"I. Becker, P. Protopapas, M. Catelan, K. Pichara","doi":"10.1051/0004-6361/202347461","DOIUrl":null,"url":null,"abstract":"In this work, we propose a novel ensemble of recurrent neural networks (RNNs) that considers the multiband and non-uniform cadence without having to compute complex features. Our proposed model consists of an ensemble of RNNs, which do not require the entire light curve to perform inference, making the inference process simpler. The ensemble is able to adapt to varying numbers of bands, tested on three real light curve datasets, namely <i>Gaia<i/>, Pan-STARRS1, and ZTF, to demonstrate its potential for generalization. We also show the capabilities of deep learning to perform not only classification, but also regression of physical parameters such as effective temperature and radius. Our ensemble model demonstrates superior performance in scenarios with fewer observations, thus providing potential for early classification of sources from facilities such as Vera C. Rubin Observatory’s LSST. The results underline the model’s effectiveness and flexibility, making it a promising tool for future astronomical surveys. Our research has shown that a multitask learning approach can enrich the embeddings obtained by the models, making them instrumental to solve additional tasks, such as determining the orbital parameters of binary systems or estimating parameters for object types beyond periodic ones.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"128 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202347461","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose a novel ensemble of recurrent neural networks (RNNs) that considers the multiband and non-uniform cadence without having to compute complex features. Our proposed model consists of an ensemble of RNNs, which do not require the entire light curve to perform inference, making the inference process simpler. The ensemble is able to adapt to varying numbers of bands, tested on three real light curve datasets, namely Gaia, Pan-STARRS1, and ZTF, to demonstrate its potential for generalization. We also show the capabilities of deep learning to perform not only classification, but also regression of physical parameters such as effective temperature and radius. Our ensemble model demonstrates superior performance in scenarios with fewer observations, thus providing potential for early classification of sources from facilities such as Vera C. Rubin Observatory’s LSST. The results underline the model’s effectiveness and flexibility, making it a promising tool for future astronomical surveys. Our research has shown that a multitask learning approach can enrich the embeddings obtained by the models, making them instrumental to solve additional tasks, such as determining the orbital parameters of binary systems or estimating parameters for object types beyond periodic ones.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.