Minghao Ning, Haozong Zhong, Zhen Gu, Ling-En Zhang, Ning Qu, Jun Ding, Tao Li, Lin Li
{"title":"Enhanced optical encryption via polarization-dependent multi-channel metasurfaces","authors":"Minghao Ning, Haozong Zhong, Zhen Gu, Ling-En Zhang, Ning Qu, Jun Ding, Tao Li, Lin Li","doi":"10.1515/nanoph-2024-0746","DOIUrl":null,"url":null,"abstract":"Optical encryption offers a powerful platform for secure information transfer, combining low power consumption, high-speed transmission, and intuitive visualization. Metasurfaces, with their unprecedented ability to manipulate light across multiple degrees of freedom within quasi-two-dimensional nanostructures, are emerging as promising devices for advanced encryption. However, encryption capacity remains constrained by limited information channels. Here, we present a visual secret sharing (VSS) scheme utilizing metasurfaces with multiple polarization-dependent channels and minimized crosstalk. Using a global optimization strategy for nanostructure geometries across the entire metasurface, we successfully realize eight independent polarization channels with negligible crosstalk. By encoding both the key and information into these channels with a modified VSS scheme, we demonstrate the complete recovery of seven plaintexts. This strategy supports scalable, high-capacity encryption, and can incorporate additional optical degrees of freedom, offering advanced solutions for advanced secure communication, information storage, and anti-counterfeiting.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"8 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0746","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical encryption offers a powerful platform for secure information transfer, combining low power consumption, high-speed transmission, and intuitive visualization. Metasurfaces, with their unprecedented ability to manipulate light across multiple degrees of freedom within quasi-two-dimensional nanostructures, are emerging as promising devices for advanced encryption. However, encryption capacity remains constrained by limited information channels. Here, we present a visual secret sharing (VSS) scheme utilizing metasurfaces with multiple polarization-dependent channels and minimized crosstalk. Using a global optimization strategy for nanostructure geometries across the entire metasurface, we successfully realize eight independent polarization channels with negligible crosstalk. By encoding both the key and information into these channels with a modified VSS scheme, we demonstrate the complete recovery of seven plaintexts. This strategy supports scalable, high-capacity encryption, and can incorporate additional optical degrees of freedom, offering advanced solutions for advanced secure communication, information storage, and anti-counterfeiting.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.