Telecom-Wavelength Single-Photon Emitters in Multilayer InSe

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-13 DOI:10.1021/acsnano.4c13888
Huan Zhao, Saban M. Hus, Jinli Chen, Xiaodong Yan, Benjamin J. Lawrie, Stephen Jesse, An-Ping Li, Liangbo Liang, Han Htoon
{"title":"Telecom-Wavelength Single-Photon Emitters in Multilayer InSe","authors":"Huan Zhao, Saban M. Hus, Jinli Chen, Xiaodong Yan, Benjamin J. Lawrie, Stephen Jesse, An-Ping Li, Liangbo Liang, Han Htoon","doi":"10.1021/acsnano.4c13888","DOIUrl":null,"url":null,"abstract":"The development of robust and efficient single-photon emitters (SPEs) at telecom wavelengths is critical for advancements in quantum information science. Two-dimensional (2D) materials have recently emerged as promising sources for SPEs, owing to their high photon extraction efficiency, facile coupling to external fields, and seamless integration into photonic circuits. In this study, we demonstrate the creation of SPEs emitting in the 1000–1550 nm near-infrared range by coupling 2D indium selenide (InSe) with strain-inducing nanopillar arrays. The emission wavelength exhibits a strong dependence on the number of layers. Hanbury Brown and Twiss experiments conducted at 10 K reveal clear photon antibunching, confirming the single-photon nature of the emissions. Density-functional-theory calculations and scanning-tunneling-microscopy analyses provide insights into the electronic structures and defect states, elucidating the origins of the SPEs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"2 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13888","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of robust and efficient single-photon emitters (SPEs) at telecom wavelengths is critical for advancements in quantum information science. Two-dimensional (2D) materials have recently emerged as promising sources for SPEs, owing to their high photon extraction efficiency, facile coupling to external fields, and seamless integration into photonic circuits. In this study, we demonstrate the creation of SPEs emitting in the 1000–1550 nm near-infrared range by coupling 2D indium selenide (InSe) with strain-inducing nanopillar arrays. The emission wavelength exhibits a strong dependence on the number of layers. Hanbury Brown and Twiss experiments conducted at 10 K reveal clear photon antibunching, confirming the single-photon nature of the emissions. Density-functional-theory calculations and scanning-tunneling-microscopy analyses provide insights into the electronic structures and defect states, elucidating the origins of the SPEs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Molecular Circuit-Controlled Nanoparticle Folders for Programmable DNA Information Access Telecom-Wavelength Single-Photon Emitters in Multilayer InSe Revealing the Phonon Bottleneck Limit in Negatively Charged CdS Quantum Dots Adaptive Surfaces with Stimuli-Responsive Wettability: From Tailoring to Applications Hybrid Ferroelectric Tunnel Junctions: State of the Art, Challenges, and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1