Insights into the Degradability of Poly(lactic acid) and Its Association with the Bacterial Community in a Simulated Industrial Food Waste Composting System

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL ACS ES&T engineering Pub Date : 2025-01-02 DOI:10.1021/acsestengg.4c0059510.1021/acsestengg.4c00595
Guangyu Cui, Xiaoyi Wu, Xuyang Lei, Ning Wang, Fan Lü, Pinjing He and Qiyong Xu*, 
{"title":"Insights into the Degradability of Poly(lactic acid) and Its Association with the Bacterial Community in a Simulated Industrial Food Waste Composting System","authors":"Guangyu Cui,&nbsp;Xiaoyi Wu,&nbsp;Xuyang Lei,&nbsp;Ning Wang,&nbsp;Fan Lü,&nbsp;Pinjing He and Qiyong Xu*,&nbsp;","doi":"10.1021/acsestengg.4c0059510.1021/acsestengg.4c00595","DOIUrl":null,"url":null,"abstract":"<p >The environmental risk associated with bioplastics has garnered increasing attention. However, their fates and the driving mechanisms in industrial composting engineering, which is a primary method for treating food waste, remain unclear. This study delved into the degradation behaviors of poly(lactic acid) (PLA) and its correlation with the PLA-associated bacterial communities in simulated food waste composting systems with and without the addition of a microbial agent (MA). The results derived from the water contact angle and molecular weight (<i>M</i><sub>n</sub>) analyses indicate that composting exhibited a limited degradation capacity for the polymer. The addition of the microbial agent (MA) demonstrated a promoting effect, leading to final <i>M</i><sub>n</sub> values of 8970 g·mol<sup>–1</sup> for the treatment group and 19,324 g·mol<sup>–1</sup> for the control group, compared to an initial <i>M</i><sub>n</sub> of 50,136 g·mol<sup>–1</sup> for the polymer. The influence of composting on PLA-associated bacterial communities manifested in the later stages of composting, showing a lower diversity (Shannon index of 4.11) compared to the compost (4.50). The supplementation of MA facilitated the development of biofilms within the plastisphere, resulting in an increased level of presence of functional bacteria crucial for PLA degradation. This study sheds light on the underlying mechanisms of PLA degradation under typical food waste composting conditions, providing crucial insights into the effective handling and risk evaluation of bioplastics in composting environments.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 2","pages":"531–540 531–540"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The environmental risk associated with bioplastics has garnered increasing attention. However, their fates and the driving mechanisms in industrial composting engineering, which is a primary method for treating food waste, remain unclear. This study delved into the degradation behaviors of poly(lactic acid) (PLA) and its correlation with the PLA-associated bacterial communities in simulated food waste composting systems with and without the addition of a microbial agent (MA). The results derived from the water contact angle and molecular weight (Mn) analyses indicate that composting exhibited a limited degradation capacity for the polymer. The addition of the microbial agent (MA) demonstrated a promoting effect, leading to final Mn values of 8970 g·mol–1 for the treatment group and 19,324 g·mol–1 for the control group, compared to an initial Mn of 50,136 g·mol–1 for the polymer. The influence of composting on PLA-associated bacterial communities manifested in the later stages of composting, showing a lower diversity (Shannon index of 4.11) compared to the compost (4.50). The supplementation of MA facilitated the development of biofilms within the plastisphere, resulting in an increased level of presence of functional bacteria crucial for PLA degradation. This study sheds light on the underlying mechanisms of PLA degradation under typical food waste composting conditions, providing crucial insights into the effective handling and risk evaluation of bioplastics in composting environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Broad Influence of Quorum Sensing in Environmental Biotechnology: From Mechanisms to Applications Innovative Catalysis Approaches for Methane Utilization Cooking Oil Fumes: A Comprehensive Review of Emission Characteristics and Catalytic Oxidation Strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1