Green synthesis of nanomaterials used as nano-fertilizer for sustainability in crop production: A overview on recent advancements and future perspectives
{"title":"Green synthesis of nanomaterials used as nano-fertilizer for sustainability in crop production: A overview on recent advancements and future perspectives","authors":"Muskaan Bansal , Naveen Jyoti , Aniket Bharti , Deepika , Shweta Sharma , Manoj Thakur , Vishnu Chauhan , Rajesh Kumar","doi":"10.1016/j.plana.2025.100143","DOIUrl":null,"url":null,"abstract":"<div><div>Nano-fertilizers (NFs) have attracted a growing interest in the field of green farming. Materials ranging from 1 to 100 nm provide nutrients to different types of plants. NFs have been recognized as cost-effective alternatives for traditional chemical fertilizers to boost the global food supply in an environmentally friendly manner. These NFs constitutes macronutrients and micronutrients that work as carriers for different type of nutrients, and reduce the additional amount of chemical in plants. However, nano-coated materials with the size more than 10 nm manage to enter through the different parts of plants such as stomata, foliar and roots etc. Green synthesized materials-based NFs effect on productivity of different crops plants. For instance, ZnO based nanoparticles (NPs) NFs effect the productions of the crops such as cucumber, peanuts, cabbage and cauliflower. Rare earth oxides nanoparticles-based NFs effect the productions of various vegetables. Iron oxide along with calcium carbonate nanoparticles-based NFs effect the growth of cereals plant. Significantly, green synthesis of Zinc and copper with the extract of basil plant attributes as significant nano-fertilizers. This review research discusses the potential benefits of nanofertilizers in a variety of areas, including agriculture, production, the mechanism of entrance of nanofertilizers into plants, the process of action, and the impacts of nanomaterials in soil. Policymakers have established standard for regulating the dosage, frequency, and time duration of NF’s possible usage in food production.</div></div>","PeriodicalId":101029,"journal":{"name":"Plant Nano Biology","volume":"11 ","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Nano Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773111125000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-fertilizers (NFs) have attracted a growing interest in the field of green farming. Materials ranging from 1 to 100 nm provide nutrients to different types of plants. NFs have been recognized as cost-effective alternatives for traditional chemical fertilizers to boost the global food supply in an environmentally friendly manner. These NFs constitutes macronutrients and micronutrients that work as carriers for different type of nutrients, and reduce the additional amount of chemical in plants. However, nano-coated materials with the size more than 10 nm manage to enter through the different parts of plants such as stomata, foliar and roots etc. Green synthesized materials-based NFs effect on productivity of different crops plants. For instance, ZnO based nanoparticles (NPs) NFs effect the productions of the crops such as cucumber, peanuts, cabbage and cauliflower. Rare earth oxides nanoparticles-based NFs effect the productions of various vegetables. Iron oxide along with calcium carbonate nanoparticles-based NFs effect the growth of cereals plant. Significantly, green synthesis of Zinc and copper with the extract of basil plant attributes as significant nano-fertilizers. This review research discusses the potential benefits of nanofertilizers in a variety of areas, including agriculture, production, the mechanism of entrance of nanofertilizers into plants, the process of action, and the impacts of nanomaterials in soil. Policymakers have established standard for regulating the dosage, frequency, and time duration of NF’s possible usage in food production.