Aaron Aw Teik Hong , Renuganth Varatharajoo , Yew-Chung Chak
{"title":"Review of deployment controllers for space tethered system","authors":"Aaron Aw Teik Hong , Renuganth Varatharajoo , Yew-Chung Chak","doi":"10.1016/j.asr.2024.11.061","DOIUrl":null,"url":null,"abstract":"<div><div>This review article investigates the performance of newly designed controllers for Tethered Space Systems (TSS) deployment, comparing them to past and current research. Specifically, the study delves into the PD type controller, known for its simplicity and early development. While PD controllers adequately manage non-coplanar scenarios with external perturbations, they are limited to linearized cases. In contrast, advanced controllers like Sliding Mode Control (SMC) effectively handle TSS’s highly nonlinear dynamics due to their robust nature. The study introduces a sigma function, derived from Djebli’s literature, to regulate tether deployment rate and length across all controllers. Simulation results demonstrate the feasibility of controlling out-of-plane libration angles solely through the tether tension. Among the controllers tested, the advanced sigma-SMC exhibits superior accuracy during deployment, while the modified SMC deploys the tether fastest albeit with significant steady-state errors and deflection angles. Numerical results show that the original SMC controller performs well as the most fuel-efficient option. This comparison focuses solely on tether deployment with J2 and gravity-gradient perturbations, offering a foundation for further exploration into TSS missions, including factors like aerodynamic drag, solar radiation, third body perturbations, tether flexibility, and retrieval phase control, tailored to specific mission requirements.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"75 4","pages":"Pages 3933-3949"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027311772401192X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This review article investigates the performance of newly designed controllers for Tethered Space Systems (TSS) deployment, comparing them to past and current research. Specifically, the study delves into the PD type controller, known for its simplicity and early development. While PD controllers adequately manage non-coplanar scenarios with external perturbations, they are limited to linearized cases. In contrast, advanced controllers like Sliding Mode Control (SMC) effectively handle TSS’s highly nonlinear dynamics due to their robust nature. The study introduces a sigma function, derived from Djebli’s literature, to regulate tether deployment rate and length across all controllers. Simulation results demonstrate the feasibility of controlling out-of-plane libration angles solely through the tether tension. Among the controllers tested, the advanced sigma-SMC exhibits superior accuracy during deployment, while the modified SMC deploys the tether fastest albeit with significant steady-state errors and deflection angles. Numerical results show that the original SMC controller performs well as the most fuel-efficient option. This comparison focuses solely on tether deployment with J2 and gravity-gradient perturbations, offering a foundation for further exploration into TSS missions, including factors like aerodynamic drag, solar radiation, third body perturbations, tether flexibility, and retrieval phase control, tailored to specific mission requirements.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.