{"title":"Maximization of fundamental frequency for small satellite components layout design","authors":"Wei Cong, Bingxiao Du, Yong Zhao","doi":"10.1016/j.asr.2024.11.079","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a bi-objective optimization method for the small satellite components layout optimization design, considering mass characteristics and fundamental frequency characteristics. Firstly, <span><math><mrow><mi>φ</mi></mrow></math></span> function is used to describe the geometry and position relationships between components, effectively addressing the non-overlap constraints among them. Then, the finite element method is used to calculate the stiffness and mass of the satellite load-bearing board to determine the fundamental frequency of the satellite. In addition, the paper designs a novel bi-objective optimization algorithm combined Diverse Gradient Optimization (DGO) algorithm with the Smart Normal Constraint (SNC) method, which simplifies the complex gradient calculation through semi-analytical sensitivity analysis. Finally, numerical examples validate the applicability and rationality of the proposed optimization method in solving bi-objective satellite components layout problems. The results show that the method can provide effective solutions for the layout design of small satellite components while considering both mass characteristics and fundamental frequency characteristics optimization.</div></div>","PeriodicalId":50850,"journal":{"name":"Advances in Space Research","volume":"75 4","pages":"Pages 3967-3981"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Space Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0273117724012109","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a bi-objective optimization method for the small satellite components layout optimization design, considering mass characteristics and fundamental frequency characteristics. Firstly, function is used to describe the geometry and position relationships between components, effectively addressing the non-overlap constraints among them. Then, the finite element method is used to calculate the stiffness and mass of the satellite load-bearing board to determine the fundamental frequency of the satellite. In addition, the paper designs a novel bi-objective optimization algorithm combined Diverse Gradient Optimization (DGO) algorithm with the Smart Normal Constraint (SNC) method, which simplifies the complex gradient calculation through semi-analytical sensitivity analysis. Finally, numerical examples validate the applicability and rationality of the proposed optimization method in solving bi-objective satellite components layout problems. The results show that the method can provide effective solutions for the layout design of small satellite components while considering both mass characteristics and fundamental frequency characteristics optimization.
期刊介绍:
The COSPAR publication Advances in Space Research (ASR) is an open journal covering all areas of space research including: space studies of the Earth''s surface, meteorology, climate, the Earth-Moon system, planets and small bodies of the solar system, upper atmospheres, ionospheres and magnetospheres of the Earth and planets including reference atmospheres, space plasmas in the solar system, astrophysics from space, materials sciences in space, fundamental physics in space, space debris, space weather, Earth observations of space phenomena, etc.
NB: Please note that manuscripts related to life sciences as related to space are no more accepted for submission to Advances in Space Research. Such manuscripts should now be submitted to the new COSPAR Journal Life Sciences in Space Research (LSSR).
All submissions are reviewed by two scientists in the field. COSPAR is an interdisciplinary scientific organization concerned with the progress of space research on an international scale. Operating under the rules of ICSU, COSPAR ignores political considerations and considers all questions solely from the scientific viewpoint.