Reinforcement learning-based fuzzy controller for autonomous guided vehicle path tracking

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2025-02-14 DOI:10.1016/j.aei.2025.103180
Ping-Huan Kuo , Sing-Yan Chen , Po-Hsun Feng , Chen-Wen Chang , Chiou-Jye Huang , Chao-Chung Peng
{"title":"Reinforcement learning-based fuzzy controller for autonomous guided vehicle path tracking","authors":"Ping-Huan Kuo ,&nbsp;Sing-Yan Chen ,&nbsp;Po-Hsun Feng ,&nbsp;Chen-Wen Chang ,&nbsp;Chiou-Jye Huang ,&nbsp;Chao-Chung Peng","doi":"10.1016/j.aei.2025.103180","DOIUrl":null,"url":null,"abstract":"<div><div>Automated guided vehicles (AGVs) play a critical role in connecting the entire production line. A fully automated AGV must perform four functions, namely simultaneous localization and mapping (SLAM), positioning, routing, and path tracking. In the present study, Hector SLAM, adaptive Monte Carlo localization, and Anytime Repairing A* were used to perform SLAM, localization, and path planning functions, respectively. For path tracking, a fuzzy proximal policy optimization (FPPO) controller was created by applying fuzzy control theory and incorporating reinforcement learning to improve the accuracy of the fuzzy controller’s output. Currently, extensive experience is required to manually design fuzzy rules and membership functions; an inappropriate design can lead to low control precision and poor dynamic system quality. The experimental results in both virtual and real environments demonstrated that the FPPO controller reduced both maximum and mean path tracking errors to a considerably greater extent than did a conventional fuzzy controller. In the virtual environment, the average tracking error for the circular trajectory decreased from 0.05 to 0.02 m, the U-shaped trajectory error decreased from 0.02 to 0.01 m, and the right-angle trajectory error decreased from 0.02 to 0.01 m, highlighting the FPPO controller’s high precision and stability. Similarly, in a real environment, the average tracking error for the circular trajectory decreased from 0.05 to 0.02 m, the U-shaped trajectory error decreased from 0.03 to 0.01 m, and the right-angle trajectory error decreased from 0.02 to 0.01 m. These results indicate that the FPPO controller exhibits exceptional adaptability and reliability across various path types. The FPPO controller overcomes this shortcoming by integrating reinforcement learning to optimize the fuzzy control; the method also provides a self-learning ability to the AGV. By comparison with a conventional fuzzy controller, the FPPO controller was demonstrated to improve the AGV’s path tracking ability.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"65 ","pages":"Article 103180"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625000734","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Automated guided vehicles (AGVs) play a critical role in connecting the entire production line. A fully automated AGV must perform four functions, namely simultaneous localization and mapping (SLAM), positioning, routing, and path tracking. In the present study, Hector SLAM, adaptive Monte Carlo localization, and Anytime Repairing A* were used to perform SLAM, localization, and path planning functions, respectively. For path tracking, a fuzzy proximal policy optimization (FPPO) controller was created by applying fuzzy control theory and incorporating reinforcement learning to improve the accuracy of the fuzzy controller’s output. Currently, extensive experience is required to manually design fuzzy rules and membership functions; an inappropriate design can lead to low control precision and poor dynamic system quality. The experimental results in both virtual and real environments demonstrated that the FPPO controller reduced both maximum and mean path tracking errors to a considerably greater extent than did a conventional fuzzy controller. In the virtual environment, the average tracking error for the circular trajectory decreased from 0.05 to 0.02 m, the U-shaped trajectory error decreased from 0.02 to 0.01 m, and the right-angle trajectory error decreased from 0.02 to 0.01 m, highlighting the FPPO controller’s high precision and stability. Similarly, in a real environment, the average tracking error for the circular trajectory decreased from 0.05 to 0.02 m, the U-shaped trajectory error decreased from 0.03 to 0.01 m, and the right-angle trajectory error decreased from 0.02 to 0.01 m. These results indicate that the FPPO controller exhibits exceptional adaptability and reliability across various path types. The FPPO controller overcomes this shortcoming by integrating reinforcement learning to optimize the fuzzy control; the method also provides a self-learning ability to the AGV. By comparison with a conventional fuzzy controller, the FPPO controller was demonstrated to improve the AGV’s path tracking ability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
Quantitative multi-index residual capacities assessment of structural components through deep-learning-based image processing: A proof-of-concept study on masonry walls Reinforcement learning-based fuzzy controller for autonomous guided vehicle path tracking A Voxel-Based 3D reconstruction and action recognition method for construction workers Intelligent wireless tool wear monitoring system based on chucked tool condition monitoring ring and deep learning Correlation-aware constrained many-objective service composition in crowdsourcing design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1