{"title":"Exact solution of workload consistent vehicle routing problem with priority distribution and demand uncertainty","authors":"Shiping Wu, Chun Jin, Hongguang Bo","doi":"10.1016/j.cie.2025.110940","DOIUrl":null,"url":null,"abstract":"<div><div>This study attempts to solve a workload consistent vehicle routing problem with priority distribution and demand uncertainty. Workload consistency requires the difference in working time allocated to drivers each day within a planning horizon to be limited to a fixed range. Partial split delivery, multi-trips, and uncertain demand are also considered. To address both transportation costs and priority-based distribution concerns, hierarchical objectives are adopted with the primary objective of minimizing travel costs and the secondary objective of maximizing distribution rewards. An exact algorithm based on set-partitioning formulation and robust column-and-cut generation is proposed to solve the problem, where a lower bound and an upper bound are used to derive some feasible columns, and these candidate columns are used in solving the set-partitioning formulation to obtain the optimal solution. Simultaneous decisions on visit sequence and distribution amount under conditions of demand uncertainty exacerbate the difficulty of solving the pricing subproblem. Therefore, we design a robust labelling algorithm involving a robust feasible extension check and an optimal distribution pattern computation to address this difficulty. The upper bound is obtained by a clustering-routing-assignment heuristics. Numerical experiments indicate that the proposed exact method can effectively solve medium-and partially large-scale instances, and the results have good robustness.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"202 ","pages":"Article 110940"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835225000865","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study attempts to solve a workload consistent vehicle routing problem with priority distribution and demand uncertainty. Workload consistency requires the difference in working time allocated to drivers each day within a planning horizon to be limited to a fixed range. Partial split delivery, multi-trips, and uncertain demand are also considered. To address both transportation costs and priority-based distribution concerns, hierarchical objectives are adopted with the primary objective of minimizing travel costs and the secondary objective of maximizing distribution rewards. An exact algorithm based on set-partitioning formulation and robust column-and-cut generation is proposed to solve the problem, where a lower bound and an upper bound are used to derive some feasible columns, and these candidate columns are used in solving the set-partitioning formulation to obtain the optimal solution. Simultaneous decisions on visit sequence and distribution amount under conditions of demand uncertainty exacerbate the difficulty of solving the pricing subproblem. Therefore, we design a robust labelling algorithm involving a robust feasible extension check and an optimal distribution pattern computation to address this difficulty. The upper bound is obtained by a clustering-routing-assignment heuristics. Numerical experiments indicate that the proposed exact method can effectively solve medium-and partially large-scale instances, and the results have good robustness.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.