Recycling waste tires as an economical carbon source for developing high-value hard carbon anodes for potassium/sodium-ion batteries

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Sustainable Materials and Technologies Pub Date : 2025-02-11 DOI:10.1016/j.susmat.2025.e01294
Qianzi Sun , Ling Bai , Peng Zhang , Xianming Liu , Guilong Liu , Shaozhou Li , Ziquan Li , Zhen-Dong Huang
{"title":"Recycling waste tires as an economical carbon source for developing high-value hard carbon anodes for potassium/sodium-ion batteries","authors":"Qianzi Sun ,&nbsp;Ling Bai ,&nbsp;Peng Zhang ,&nbsp;Xianming Liu ,&nbsp;Guilong Liu ,&nbsp;Shaozhou Li ,&nbsp;Ziquan Li ,&nbsp;Zhen-Dong Huang","doi":"10.1016/j.susmat.2025.e01294","DOIUrl":null,"url":null,"abstract":"<div><div>The large-scale improper disposal of organic solid waste poses significant environmental challenges. Converting this waste into high-value carbon-based materials provides a sustainable solution for energy applications. In this study, we propose the development of a nitrogen/oxygen-enriched hard carbon material derived from low-cost, environmentally detrimental waste tires through a two-step pre-oxidation and nitriding process. The resulting material exhibits exceptional electrochemical performance as an anode in potassium-ion batteries (PIBs) and sodium-ion batteries (SIBs). In PIBs, it achieves a high reversible capacity of 363 mAh g<sup>−1</sup> after 200 cycles at 100 mA g<sup>−1</sup> and demonstrates excellent cycling stability, maintaining 328.9 mAh g<sup>−1</sup> after 1000 cycles at 1000 mA g<sup>−1</sup>. In SIBs, it maintains a discharge capacity of 406.7 mAh g<sup>−1</sup> after 100 cycles at a high current density of 1000 mA g<sup>−1</sup>. The material's outstanding performance is attributed to its high surface area and abundant heteroatom doping, which create numerous active sites for potassium and sodium ion storage, enhancing rapid ion transport and electron flow. This work presents a simple, environmentally friendly, and sustainable approach to upcycling waste tires into high-performance hard carbon materials, offering a promising anode solution for advanced PIBs/SIBs.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"43 ","pages":"Article e01294"},"PeriodicalIF":8.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725000624","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The large-scale improper disposal of organic solid waste poses significant environmental challenges. Converting this waste into high-value carbon-based materials provides a sustainable solution for energy applications. In this study, we propose the development of a nitrogen/oxygen-enriched hard carbon material derived from low-cost, environmentally detrimental waste tires through a two-step pre-oxidation and nitriding process. The resulting material exhibits exceptional electrochemical performance as an anode in potassium-ion batteries (PIBs) and sodium-ion batteries (SIBs). In PIBs, it achieves a high reversible capacity of 363 mAh g−1 after 200 cycles at 100 mA g−1 and demonstrates excellent cycling stability, maintaining 328.9 mAh g−1 after 1000 cycles at 1000 mA g−1. In SIBs, it maintains a discharge capacity of 406.7 mAh g−1 after 100 cycles at a high current density of 1000 mA g−1. The material's outstanding performance is attributed to its high surface area and abundant heteroatom doping, which create numerous active sites for potassium and sodium ion storage, enhancing rapid ion transport and electron flow. This work presents a simple, environmentally friendly, and sustainable approach to upcycling waste tires into high-performance hard carbon materials, offering a promising anode solution for advanced PIBs/SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
期刊最新文献
Self-powered sensing potential in CO2 adsorption-desorption processes A critical review of waste tire pyrolysis for diesel engines: Technologies, challenges, and future prospects Recycling waste tires as an economical carbon source for developing high-value hard carbon anodes for potassium/sodium-ion batteries Recycling waste rubber bands and human hair into complementary surface structure-based tribo-layers for ultrahigh power generation and self-powered health monitoring Mimicking the champagne colour of commercial satin silk integrating the extract from Eupatorium adenophorum with metal ions – An economic solution to tackle with invasive plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1