Evaluation of high-speed laser triangulation and LIDAR for turbulent water surface ranging

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2025-02-11 DOI:10.1016/j.expthermflusci.2025.111432
Jure Zevnik , Marko Hočevar , Sabina Kolbl-Repinc , Gašper Rak
{"title":"Evaluation of high-speed laser triangulation and LIDAR for turbulent water surface ranging","authors":"Jure Zevnik ,&nbsp;Marko Hočevar ,&nbsp;Sabina Kolbl-Repinc ,&nbsp;Gašper Rak","doi":"10.1016/j.expthermflusci.2025.111432","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comparison of high-speed laser triangulation and laser scanning, two advanced measurement methods for capturing the free water surface of complex hydraulic phenomena characterized by turbulent, non-stationary, and non-homogeneous flows. The methods were applied to measure the turbulent, aerated water surface of a flow under supercritical flow conditions, defined by high Reynolds and Froude numbers. Measurements were conducted using a high-speed camera operating on the principle of laser triangulation, and a laser scanner serving as a light source. Data evaluation was performed for three cross-sections along the confluence, indicating a very good overall agreement between both measuring systems with mean discrepancies of 0.26 mm horizontally and 2.7 mm vertically, which fall within the reported systematic and statistical errors of the light detection and ranging (LIDAR) device. With most relative errors within ±10 %, the mean differences between the two measurement systems were an order of magnitude smaller than the temporal and spatial fluctuations of the observed free surfaces, and the instantaneous errors remained within the physical range of these fluctuations. Further error analysis revealed that high-speed triangulation underestimates free surface levels in flows with steadier, well-defined water surfaces, and overestimates in regions with highly transient and poorly defined surfaces compared to LIDAR. These discrepancies were attributed to differing system sensitivities. The high-speed camera sensor exhibits higher sensitivity, capturing more reflections from water droplets and successive reflections from submerged air bubbles compared to the LIDAR device. This highlights the need for further investigation into these error sources and the development of more robust data filtering techniques. Overall, both methods effectively captured the complex dynamics of turbulent aerated flows, showing promising capabilities for measuring turbulent water surfaces in laboratory environments.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"164 ","pages":"Article 111432"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725000263","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comparison of high-speed laser triangulation and laser scanning, two advanced measurement methods for capturing the free water surface of complex hydraulic phenomena characterized by turbulent, non-stationary, and non-homogeneous flows. The methods were applied to measure the turbulent, aerated water surface of a flow under supercritical flow conditions, defined by high Reynolds and Froude numbers. Measurements were conducted using a high-speed camera operating on the principle of laser triangulation, and a laser scanner serving as a light source. Data evaluation was performed for three cross-sections along the confluence, indicating a very good overall agreement between both measuring systems with mean discrepancies of 0.26 mm horizontally and 2.7 mm vertically, which fall within the reported systematic and statistical errors of the light detection and ranging (LIDAR) device. With most relative errors within ±10 %, the mean differences between the two measurement systems were an order of magnitude smaller than the temporal and spatial fluctuations of the observed free surfaces, and the instantaneous errors remained within the physical range of these fluctuations. Further error analysis revealed that high-speed triangulation underestimates free surface levels in flows with steadier, well-defined water surfaces, and overestimates in regions with highly transient and poorly defined surfaces compared to LIDAR. These discrepancies were attributed to differing system sensitivities. The high-speed camera sensor exhibits higher sensitivity, capturing more reflections from water droplets and successive reflections from submerged air bubbles compared to the LIDAR device. This highlights the need for further investigation into these error sources and the development of more robust data filtering techniques. Overall, both methods effectively captured the complex dynamics of turbulent aerated flows, showing promising capabilities for measuring turbulent water surfaces in laboratory environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
Thermal conductivity of carboxymethyl cellulose-based Fe3O4 and Al2O3 nanofluids: An improved measurement method Design and validation of an air-bearing-based micro skin-friction balance for small area samples Editorial Board Evaluation of high-speed laser triangulation and LIDAR for turbulent water surface ranging Experimental study and correlation analysis of breakup characteristics of liquid nitrogen jets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1