{"title":"Glucose-regulating hydrogel for immune modulation and angiogenesis through metabolic reprogramming and LARP7-SIRT1 pathway in infected diabetic wounds","authors":"Yuheng Liao , Zhenhe Zhang , Weixian Hu , Shengming Zhang , Yanzhi Zhao, Lizhi Ouyang, Chenyan Yu, Mengfei Liu, Bobin Mi, Guohui Liu","doi":"10.1016/j.biomaterials.2025.123182","DOIUrl":null,"url":null,"abstract":"<div><div>In diabetic-infected wounds, the local hyperglycemic state leads to unique pathological characteristics of diabetic ulcers, such as secondary chronic infections, abnormal angiogenesis, oxidative stress, and diabetic peripheral neuropathy. Glucose oxidase (GOx) is an enzyme that catalyzes the breakdown of glucose into hydrogen peroxide and gluconic acid, making it a candidate enzyme for regulating the hyperglycemic microenvironment in diabetic wounds. However, multifunctional hydrogel therapeutic systems built around the glucose-lowering capability of GOx have rarely been reported. Here, we loaded stachydrine and Au–FePS<sub>3</sub> nanosheets onto a quaternized chitosan (QC) - oxidized dextran (OD) hydrogel to construct a synergistic QC-OD@AF/S hydrogel therapeutic system. In vitro experiments showed that Au–FePS<sub>3</sub> possesses GOx-POD cascade catalytic activity, capable of reducing glucose concentration and decomposing generated hydrogen peroxide into reactive oxygen species (ROS). Concurrently, Au–FePS<sub>3</sub> exhibits excellent photothermal performance under 808 nm infrared light, synergistically exerting antibacterial capabilities with ROS and quaternary ammonium groups. Stachydrine has been demonstrated to mediate the metabolic reprogramming of macrophages and alleviate high-glucose-induced oxidative stress and impairment of angiogenesis in <em>HUVECs</em> through the LARP7-SIRT1 pathway. In summary, the QC-OD@AF/S hydrogel demonstrates superior capabilities in antibacterial activity, immune modulation, promotion of angiogenesis, and reduction of local glucose concentration, making it a potential clinical therapy.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"318 ","pages":"Article 123182"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In diabetic-infected wounds, the local hyperglycemic state leads to unique pathological characteristics of diabetic ulcers, such as secondary chronic infections, abnormal angiogenesis, oxidative stress, and diabetic peripheral neuropathy. Glucose oxidase (GOx) is an enzyme that catalyzes the breakdown of glucose into hydrogen peroxide and gluconic acid, making it a candidate enzyme for regulating the hyperglycemic microenvironment in diabetic wounds. However, multifunctional hydrogel therapeutic systems built around the glucose-lowering capability of GOx have rarely been reported. Here, we loaded stachydrine and Au–FePS3 nanosheets onto a quaternized chitosan (QC) - oxidized dextran (OD) hydrogel to construct a synergistic QC-OD@AF/S hydrogel therapeutic system. In vitro experiments showed that Au–FePS3 possesses GOx-POD cascade catalytic activity, capable of reducing glucose concentration and decomposing generated hydrogen peroxide into reactive oxygen species (ROS). Concurrently, Au–FePS3 exhibits excellent photothermal performance under 808 nm infrared light, synergistically exerting antibacterial capabilities with ROS and quaternary ammonium groups. Stachydrine has been demonstrated to mediate the metabolic reprogramming of macrophages and alleviate high-glucose-induced oxidative stress and impairment of angiogenesis in HUVECs through the LARP7-SIRT1 pathway. In summary, the QC-OD@AF/S hydrogel demonstrates superior capabilities in antibacterial activity, immune modulation, promotion of angiogenesis, and reduction of local glucose concentration, making it a potential clinical therapy.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.