miR-210 overexpression increases pressure overload-induced cardiac fibrosis

IF 5.9 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Non-coding RNA Research Pub Date : 2025-01-31 DOI:10.1016/j.ncrna.2025.01.009
G. Zaccagnini , D. Baci , S. Tastsoglou , I. Cozza , A. Madè , C. Voellenkle , M. Nicoletti , C. Ruatti , M. Longo , L. Perani , C. Gaetano , A. Esposito , F. Martelli
{"title":"miR-210 overexpression increases pressure overload-induced cardiac fibrosis","authors":"G. Zaccagnini ,&nbsp;D. Baci ,&nbsp;S. Tastsoglou ,&nbsp;I. Cozza ,&nbsp;A. Madè ,&nbsp;C. Voellenkle ,&nbsp;M. Nicoletti ,&nbsp;C. Ruatti ,&nbsp;M. Longo ,&nbsp;L. Perani ,&nbsp;C. Gaetano ,&nbsp;A. Esposito ,&nbsp;F. Martelli","doi":"10.1016/j.ncrna.2025.01.009","DOIUrl":null,"url":null,"abstract":"<div><div>Aortic stenosis, a common valvular heart disease, can lead to left ventricular pressure overload, triggering pro-fibrotic responses in the heart. miR-210 is a microRNA that responds to hypoxia and ischemia and plays a role in immune regulation and in cardiac remodeling upon myocardial infarction. This study investigated the effects of miR-210 on cardiac fibrosis caused by pressure overload.</div><div>Using a mouse model with inducible miR-210 over-expression, we subjected mice to transverse aortic constriction (TAC) to induce pressure overload. Mice with miR-210 over-expression developed eccentric hypertrophy, heightened expression of hypertrophic markers (Nppa and Nppb) and increased cross sectional area of cardiomyocytes, impacting the free wall of the left ventricle. These findings suggest that miR-210 worsens cardiac dysfunction. Furthermore, miR-210 over-expression led to a more robust and sustained inflammatory response in the heart, increased interstitial and perivascular fibrosis, and activation of myofibroblasts. miR-210 also promoted angiogenesis. <em>In vitro</em>, cardiac fibroblasts over-expressing miR-210 showed increased adhesion, wound healing and migration capacity.</div><div>Our results demonstrate that miR-210 contributes to adverse cardiac remodeling in response to pressure overload, including eccentric hypertrophy, inflammation, and fibrosis.</div></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"12 ","pages":"Pages 20-33"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054025000216","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aortic stenosis, a common valvular heart disease, can lead to left ventricular pressure overload, triggering pro-fibrotic responses in the heart. miR-210 is a microRNA that responds to hypoxia and ischemia and plays a role in immune regulation and in cardiac remodeling upon myocardial infarction. This study investigated the effects of miR-210 on cardiac fibrosis caused by pressure overload.
Using a mouse model with inducible miR-210 over-expression, we subjected mice to transverse aortic constriction (TAC) to induce pressure overload. Mice with miR-210 over-expression developed eccentric hypertrophy, heightened expression of hypertrophic markers (Nppa and Nppb) and increased cross sectional area of cardiomyocytes, impacting the free wall of the left ventricle. These findings suggest that miR-210 worsens cardiac dysfunction. Furthermore, miR-210 over-expression led to a more robust and sustained inflammatory response in the heart, increased interstitial and perivascular fibrosis, and activation of myofibroblasts. miR-210 also promoted angiogenesis. In vitro, cardiac fibroblasts over-expressing miR-210 showed increased adhesion, wound healing and migration capacity.
Our results demonstrate that miR-210 contributes to adverse cardiac remodeling in response to pressure overload, including eccentric hypertrophy, inflammation, and fibrosis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Non-coding RNA Research
Non-coding RNA Research Medicine-Biochemistry (medical)
CiteScore
7.70
自引率
6.00%
发文量
39
审稿时长
49 days
期刊介绍: Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.
期刊最新文献
Corrigendum to “MiRNA expression affects survival in patients with obstructive sleep apnea and metastatic colorectal cancer” [Non-coding RNA research 10 (2025) 91–97] Expression of miR-15b-5p and toll-like receptor4 as potential novel diagnostic biomarkers for hepatitis C virus-induced hepatocellular carcinoma miR-210 overexpression increases pressure overload-induced cardiac fibrosis MicroRNA-541-3p/Rac2 signaling bridges radiation-induced lung injury and repair LURAP1L-AS1 long noncoding RNA promotes breast cancer progression and associates with poor prognosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1