{"title":"A 3D network of carbon-coated SiO2 nanotubes on reduced graphene oxide for high-performance lithium-ion battery anodes","authors":"Hanlu Xu , Rui Yu , Qiong Zhang , Qi Zhou , Bo Liu , Zihan Zhou , Yuan Gao , Rongli Jiang","doi":"10.1016/j.materresbull.2025.113366","DOIUrl":null,"url":null,"abstract":"<div><div>We develop a novel 3D network-structured composite, denoted as rGO@C@SNT, wherein carbon-coated SiO<sub>2</sub> nanotubes (C@SNT) are integrated onto reduced graphene oxide (rGO). The synergistic effects of this composite provide both structural and interfacial stability during the lithiation/delithiation processes, while the carbon layer effectively improves mechanical stress and enhances conductivity. As a result, the rGO@C@SNT exhibits higher cyclic capacity, lower electrochemical impedance, and stronger charge transfer capability. Specifically, we show that the rGO@C@SNT composite maintains a high capacity of 826 mAh g<sup>-1</sup> after 200 cycles with a capacity retention rate of 100 %. The unique 3D network enhances the mobility of Li<sup>+</sup> ions and electrons, and provides the contact between the electrolyte and the active sites, thereby improving the battery performance. These findings underscore the significant potential of the rGO@C@SNT composite in advancing LIBs technology, offering a sustainable solution for next-generation energy storage systems.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"186 ","pages":"Article 113366"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825000741","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a novel 3D network-structured composite, denoted as rGO@C@SNT, wherein carbon-coated SiO2 nanotubes (C@SNT) are integrated onto reduced graphene oxide (rGO). The synergistic effects of this composite provide both structural and interfacial stability during the lithiation/delithiation processes, while the carbon layer effectively improves mechanical stress and enhances conductivity. As a result, the rGO@C@SNT exhibits higher cyclic capacity, lower electrochemical impedance, and stronger charge transfer capability. Specifically, we show that the rGO@C@SNT composite maintains a high capacity of 826 mAh g-1 after 200 cycles with a capacity retention rate of 100 %. The unique 3D network enhances the mobility of Li+ ions and electrons, and provides the contact between the electrolyte and the active sites, thereby improving the battery performance. These findings underscore the significant potential of the rGO@C@SNT composite in advancing LIBs technology, offering a sustainable solution for next-generation energy storage systems.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.