{"title":"Multi-scale mechanical behaviors of rock mass based on synthetic rock mass","authors":"Wen-Jie Xu, Kaleem Ullah Jan Khan","doi":"10.1007/s10064-025-04136-y","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical behaviors of rock mass containing discrete fracture networks (DFNs) are always a challenging topic in rock engineering. A methodology is presented that incorporates the generation of synthetic rock mass (SRM) and investigates its mechanical behavior using a GPU-based discrete element method (DEM) software, CoSim-DEM. This approach considers factors such as fracture intensity, variations in domain size, and other relevant parameters. The particle size ratio (PSR), which means the ratio of the particle size to the characteristic scale of the sample, is used to analyze the influence of the element/particle size on DEM numerical results. When the PSR is less than 0.1, it has little influence on the numerical results for both rock and rock mass samples. The numerical tests indicate that both fracture intensity and sample size significantly affect the failure and mechanical behaviors of rock mass samples. Based on a generated SRM, rock mass samples with different sizes are generated and used for numerical uniaxial tests. The results indicate that the rock mass exhibits an obvious scale-dependent characteristic, with the representative elementary volume (REV) being approximately 1.5 times the maximum size of the fractures. This study may provide a novel approach to the study of rock mass mechanics and the development of numerical test methods.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04136-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical behaviors of rock mass containing discrete fracture networks (DFNs) are always a challenging topic in rock engineering. A methodology is presented that incorporates the generation of synthetic rock mass (SRM) and investigates its mechanical behavior using a GPU-based discrete element method (DEM) software, CoSim-DEM. This approach considers factors such as fracture intensity, variations in domain size, and other relevant parameters. The particle size ratio (PSR), which means the ratio of the particle size to the characteristic scale of the sample, is used to analyze the influence of the element/particle size on DEM numerical results. When the PSR is less than 0.1, it has little influence on the numerical results for both rock and rock mass samples. The numerical tests indicate that both fracture intensity and sample size significantly affect the failure and mechanical behaviors of rock mass samples. Based on a generated SRM, rock mass samples with different sizes are generated and used for numerical uniaxial tests. The results indicate that the rock mass exhibits an obvious scale-dependent characteristic, with the representative elementary volume (REV) being approximately 1.5 times the maximum size of the fractures. This study may provide a novel approach to the study of rock mass mechanics and the development of numerical test methods.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.