N2O Emission From a Subtropical Forest Is Dominantly Regulated by Soil Denitrifiers Under Exogenous N Enrichment and Seasonal Precipitation Distribution Change
{"title":"N2O Emission From a Subtropical Forest Is Dominantly Regulated by Soil Denitrifiers Under Exogenous N Enrichment and Seasonal Precipitation Distribution Change","authors":"Xiaoge Han, Changchao Xu, Xiangping Tan, Yanxia Nie, Jinhong He, Qi Deng, Weijun Shen","doi":"10.1029/2024JG008206","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen-rich tropical/subtropical forest soil acts as a terrestrial source of nitrous oxide (N<sub>2</sub>O), a greenhouse gas commonly affected by soil nitrogen availability and soil moisture. However, in tropical and subtropical regions experiencing both elevated nitrogen deposition and altered precipitation regimes, it is unclear whether nitrogen deposition and precipitation regimes have interactive effects on forest soil N<sub>2</sub>O emissions and what roles N<sub>2</sub>O-associated nitrifiers/denitrifiers play in these interactions. We conducted a 2 year field study in a subtropical evergreen broadleaf forest in southern China by applying four treatments: nitrogen addition (N), seasonal precipitation distribution change (PC), both nitrogen addition and seasonal precipitation distribution change (NPC) and a control (C). We found that N<sub>2</sub>O efflux from the forest soil was significantly greater in the wet season than in the dry season, but was promoted by 77.4% by the NPC treatment only in the dry season. Soil moisture and pH decreased in the PC and N treatments, respectively. The abundance of nitrifying gene AOA-<i>amoA</i> and denitrifying gene <i>nosZ</i> in the wet season and the abundance of denitrifying gene <i>nirK</i> in the dry season differed significantly among the four treatments. A structural equation model showed that precipitation change was more important than nitrogen addition in affecting soil properties (e.g., moisture and pH) and N<sub>2</sub>O-associated nitrifiers/denitrifiers, while soil <i>nirK</i>- and <i>nosZ</i>-denitrifiers were the dominant functional microbes in regulating N<sub>2</sub>O emissions. The results support predictions of future nitrogen losses (N<sub>2</sub>O) in subtropical forests in the context of interactions between elevated nitrogen deposition and altered precipitation regimes.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008206","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen-rich tropical/subtropical forest soil acts as a terrestrial source of nitrous oxide (N2O), a greenhouse gas commonly affected by soil nitrogen availability and soil moisture. However, in tropical and subtropical regions experiencing both elevated nitrogen deposition and altered precipitation regimes, it is unclear whether nitrogen deposition and precipitation regimes have interactive effects on forest soil N2O emissions and what roles N2O-associated nitrifiers/denitrifiers play in these interactions. We conducted a 2 year field study in a subtropical evergreen broadleaf forest in southern China by applying four treatments: nitrogen addition (N), seasonal precipitation distribution change (PC), both nitrogen addition and seasonal precipitation distribution change (NPC) and a control (C). We found that N2O efflux from the forest soil was significantly greater in the wet season than in the dry season, but was promoted by 77.4% by the NPC treatment only in the dry season. Soil moisture and pH decreased in the PC and N treatments, respectively. The abundance of nitrifying gene AOA-amoA and denitrifying gene nosZ in the wet season and the abundance of denitrifying gene nirK in the dry season differed significantly among the four treatments. A structural equation model showed that precipitation change was more important than nitrogen addition in affecting soil properties (e.g., moisture and pH) and N2O-associated nitrifiers/denitrifiers, while soil nirK- and nosZ-denitrifiers were the dominant functional microbes in regulating N2O emissions. The results support predictions of future nitrogen losses (N2O) in subtropical forests in the context of interactions between elevated nitrogen deposition and altered precipitation regimes.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology