Deep Aggregation seq2seq Network With Time Feature Fusion for Air Pollutant Concentration Prediction in Smart Cities

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2025-02-13 DOI:10.1002/eng2.70031
Yunzhu Liu
{"title":"Deep Aggregation seq2seq Network With Time Feature Fusion for Air Pollutant Concentration Prediction in Smart Cities","authors":"Yunzhu Liu","doi":"10.1002/eng2.70031","DOIUrl":null,"url":null,"abstract":"<p>Air pollution poses significant risks to environmental quality and public health. Precise forecasting of air pollutant concentrations is crucial for safeguarding public health. The emission and diffusion of air pollutants is a dynamic process that changes over time and has significant seasonal characteristics. By leveraging time attributes such as month, day of the month, and hour, the precision and dependability of forecasting models can be enhanced. Therefore, this paper proposes a deep aggregation seq2seq network with time feature fusion for air pollutant concentration prediction. This network first effectively integrates temporal feature encoding with historical air pollutant concentration data through a cross attention network, and then excavates hidden features through deep aggregation seq2seq network. The encoder part of the network can extract the temporal correlation of fusion features, while the decoder part can generate them through recursive aggregation. The future prediction values fully utilize the local features and overall recursion of historical information, improving the accuracy of prediction. In this study, we conduct simulations on the actual datasets of PM2.5 and SO2, two air pollutants, in Beijing's Changping and Shunyi. The findings reveal that our model reduces the Mean Absolute Error by 5% to 10% compared to existing state-of-the-art models.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70031","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution poses significant risks to environmental quality and public health. Precise forecasting of air pollutant concentrations is crucial for safeguarding public health. The emission and diffusion of air pollutants is a dynamic process that changes over time and has significant seasonal characteristics. By leveraging time attributes such as month, day of the month, and hour, the precision and dependability of forecasting models can be enhanced. Therefore, this paper proposes a deep aggregation seq2seq network with time feature fusion for air pollutant concentration prediction. This network first effectively integrates temporal feature encoding with historical air pollutant concentration data through a cross attention network, and then excavates hidden features through deep aggregation seq2seq network. The encoder part of the network can extract the temporal correlation of fusion features, while the decoder part can generate them through recursive aggregation. The future prediction values fully utilize the local features and overall recursion of historical information, improving the accuracy of prediction. In this study, we conduct simulations on the actual datasets of PM2.5 and SO2, two air pollutants, in Beijing's Changping and Shunyi. The findings reveal that our model reduces the Mean Absolute Error by 5% to 10% compared to existing state-of-the-art models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时间特征融合的深度聚集seq2seq网络在智慧城市大气污染物浓度预测中的应用
空气污染对环境质量和公众健康构成重大风险。准确预报空气污染物浓度对保障公众健康至关重要。大气污染物的排放和扩散是一个随时间变化的动态过程,具有明显的季节性特征。通过利用时间属性,如月、月中的一天和小时,可以提高预测模型的精度和可靠性。为此,本文提出了一种具有时间特征融合的深度聚集seq2seq网络用于大气污染物浓度预测。该网络首先通过交叉关注网络将时间特征编码与历史空气污染物浓度数据有效融合,然后通过深度聚合seq2seq网络挖掘隐藏特征。网络的编码器部分提取融合特征的时间相关性,而解码器部分通过递归聚合生成融合特征。未来预测值充分利用了历史信息的局部特征和整体递归,提高了预测的准确性。在本研究中,我们对北京昌平和顺义的PM2.5和SO2这两种空气污染物的实际数据集进行了模拟。研究结果表明,与现有最先进的模型相比,我们的模型将平均绝对误差降低了5%至10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Effect of the Strut Thickness on the Mechanical Properties, Deformation, and Failure Mechanisms of Vascular Bundle–Inspired Structures Computational Algorithmic Innovations in Differential Equation-Based Dynamic Process Modeling Mapping Quantum Computing Techniques for NP-Hard Problems in Operations Management and Operations Research Optimal Network Reconfiguration to Improve Network Reliability and Voltage Profile in Distribution Systems Using Chaotic Linear Decreasing Inertia Weight-Based Particle Swarm Optimization Advances in Delamination Analysis and Damage Prediction: A Comprehensive Review on Polymer Composite Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1