Allochrony in Atlantic Lumpfish: Genomic and Otolith Shape Divergence Between Spring and Autumn Spawners

IF 2.3 2区 生物学 Q2 ECOLOGY Ecology and Evolution Pub Date : 2025-02-14 DOI:10.1002/ece3.70946
Mathilde Horaud, Núria Raventós, Kim Præbel, Carles Galià-Camps, Cinta Pegueroles, Carlos Carreras, Marta Pascual, Victor M. Tuset, Shripathi Bhat, Arve Lynghammar
{"title":"Allochrony in Atlantic Lumpfish: Genomic and Otolith Shape Divergence Between Spring and Autumn Spawners","authors":"Mathilde Horaud,&nbsp;Núria Raventós,&nbsp;Kim Præbel,&nbsp;Carles Galià-Camps,&nbsp;Cinta Pegueroles,&nbsp;Carlos Carreras,&nbsp;Marta Pascual,&nbsp;Victor M. Tuset,&nbsp;Shripathi Bhat,&nbsp;Arve Lynghammar","doi":"10.1002/ece3.70946","DOIUrl":null,"url":null,"abstract":"<p>Allochrony is a form of reproductive isolation characterized by differences in the timing of spawning and may play a crucial role in the genetic and phenotypic divergence within species. The Atlantic lumpfish (<i>Cyclopterus lumpus</i>) is known to spawn in spring and autumn. However, the role of allochrony on the genomic structure of this species has not been addressed. Here, by combining whole genome sequencing data and otolith shape of 64 specimens, we explore the evolutionary drivers of divergence in Atlantic lumpfish, focusing on spring and autumn spawners sampled at two well-separated spawning grounds along the Norwegian coast. Overall, we identified pronounced genomic and morphologic differences between the two spawning groups. Genomic differences between the two groups were concentrated in three chromosomes, with a region of chromosome 1 encompassing the same single nucleotide polymorphisms (SNPs) driving differential season spawning for both localities, suggesting parallel responses. The functional analysis of the SNPs in this region revealed genes associated with responses to environmental stressors, possibly adaptations to seasonal variations at high latitudes. The morphological analysis of otoliths supported these findings, showing differences compatible with adaptations to seasonal light availability. The presence of genomic islands of divergence, alongside a general lack of differentiation across the mitochondrial genome, suggest recent and rapid selection processes potentially modulated by ongoing gene flow. This study underscores the importance of considering temporal genetic structures, particularly for species with bimodal spawning time, in conservation and management strategies to prevent overexploitation and optimize breeding programs.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70946","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70946","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Allochrony is a form of reproductive isolation characterized by differences in the timing of spawning and may play a crucial role in the genetic and phenotypic divergence within species. The Atlantic lumpfish (Cyclopterus lumpus) is known to spawn in spring and autumn. However, the role of allochrony on the genomic structure of this species has not been addressed. Here, by combining whole genome sequencing data and otolith shape of 64 specimens, we explore the evolutionary drivers of divergence in Atlantic lumpfish, focusing on spring and autumn spawners sampled at two well-separated spawning grounds along the Norwegian coast. Overall, we identified pronounced genomic and morphologic differences between the two spawning groups. Genomic differences between the two groups were concentrated in three chromosomes, with a region of chromosome 1 encompassing the same single nucleotide polymorphisms (SNPs) driving differential season spawning for both localities, suggesting parallel responses. The functional analysis of the SNPs in this region revealed genes associated with responses to environmental stressors, possibly adaptations to seasonal variations at high latitudes. The morphological analysis of otoliths supported these findings, showing differences compatible with adaptations to seasonal light availability. The presence of genomic islands of divergence, alongside a general lack of differentiation across the mitochondrial genome, suggest recent and rapid selection processes potentially modulated by ongoing gene flow. This study underscores the importance of considering temporal genetic structures, particularly for species with bimodal spawning time, in conservation and management strategies to prevent overexploitation and optimize breeding programs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
期刊最新文献
An Established Plant Invader May Still Benefit From Increasing Genetic Diversity—Insights From Artificial Populations in a Common Garden Experiment Fox on the Run—Cheaper Camera Traps Fail to Detect Fast-Moving Mesopredators Allochrony in Atlantic Lumpfish: Genomic and Otolith Shape Divergence Between Spring and Autumn Spawners Origins and Diversification of Myiasis Across Blowflies Correction to “Closely Related Species Differ in Their Traits, but Competition Induces High Intra-Specific Variability”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1