{"title":"Promising Electromagnetic Interference Shielding Materials: Hybrid Fillers Reinforced Bio-Based Composites","authors":"Bedriye Ucpinar, Ayse Aytac","doi":"10.1002/app.56618","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Electromagnetic pollution, also known as electromagnetic interference (EMI) issues, is a growing concern as electronic and telecommunication technologies advance. The resulting urgent demand for EMI shielding materials underscores the need for the development of high-performance, environmentally friendly shielding materials. Here, we assess the impact of multiscale carbon-based hybrid filler on the EMI shielding performance of polyamide 11/poly(lactic acid) composites. The effects of the amounts (0.5 to 5 wt%) of graphene nanoplatelets (GNPs) and multiwalled carbon nanotube (MWCNT) nanofillers in carbon fiber (CF)/GNP and CF/MWCNT-reinforced hybrid composites were comparatively investigated. The composites were fabricated through melt blending/compression molding and subsequently characterized in terms of morphological, fiber length, electrical properties, and EMI shielding effectiveness (EMI SE). Morphological imaging revealed a good adhesion between the fillers and the matrix, indicating a favorable interaction. The fiber length analysis demonstrated that fiber lengths were longer in CF/GNP hybrid composites than in CF/MWCNT. The EMI SE measurements showed the synergistic effects of the fillers in the X and Ku bands. The highest EMI SE values at 10 GHz and 16 GHz for the 20CF-5GNP composite were 34 and 40 dB, respectively.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56618","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic pollution, also known as electromagnetic interference (EMI) issues, is a growing concern as electronic and telecommunication technologies advance. The resulting urgent demand for EMI shielding materials underscores the need for the development of high-performance, environmentally friendly shielding materials. Here, we assess the impact of multiscale carbon-based hybrid filler on the EMI shielding performance of polyamide 11/poly(lactic acid) composites. The effects of the amounts (0.5 to 5 wt%) of graphene nanoplatelets (GNPs) and multiwalled carbon nanotube (MWCNT) nanofillers in carbon fiber (CF)/GNP and CF/MWCNT-reinforced hybrid composites were comparatively investigated. The composites were fabricated through melt blending/compression molding and subsequently characterized in terms of morphological, fiber length, electrical properties, and EMI shielding effectiveness (EMI SE). Morphological imaging revealed a good adhesion between the fillers and the matrix, indicating a favorable interaction. The fiber length analysis demonstrated that fiber lengths were longer in CF/GNP hybrid composites than in CF/MWCNT. The EMI SE measurements showed the synergistic effects of the fillers in the X and Ku bands. The highest EMI SE values at 10 GHz and 16 GHz for the 20CF-5GNP composite were 34 and 40 dB, respectively.
期刊介绍:
The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.