Promising Electromagnetic Interference Shielding Materials: Hybrid Fillers Reinforced Bio-Based Composites

IF 2.7 3区 化学 Q2 POLYMER SCIENCE Journal of Applied Polymer Science Pub Date : 2025-01-22 DOI:10.1002/app.56618
Bedriye Ucpinar, Ayse Aytac
{"title":"Promising Electromagnetic Interference Shielding Materials: Hybrid Fillers Reinforced Bio-Based Composites","authors":"Bedriye Ucpinar,&nbsp;Ayse Aytac","doi":"10.1002/app.56618","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Electromagnetic pollution, also known as electromagnetic interference (EMI) issues, is a growing concern as electronic and telecommunication technologies advance. The resulting urgent demand for EMI shielding materials underscores the need for the development of high-performance, environmentally friendly shielding materials. Here, we assess the impact of multiscale carbon-based hybrid filler on the EMI shielding performance of polyamide 11/poly(lactic acid) composites. The effects of the amounts (0.5 to 5 wt%) of graphene nanoplatelets (GNPs) and multiwalled carbon nanotube (MWCNT) nanofillers in carbon fiber (CF)/GNP and CF/MWCNT-reinforced hybrid composites were comparatively investigated. The composites were fabricated through melt blending/compression molding and subsequently characterized in terms of morphological, fiber length, electrical properties, and EMI shielding effectiveness (EMI SE). Morphological imaging revealed a good adhesion between the fillers and the matrix, indicating a favorable interaction. The fiber length analysis demonstrated that fiber lengths were longer in CF/GNP hybrid composites than in CF/MWCNT. The EMI SE measurements showed the synergistic effects of the fillers in the X and Ku bands. The highest EMI SE values at 10 GHz and 16 GHz for the 20CF-5GNP composite were 34 and 40 dB, respectively.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56618","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic pollution, also known as electromagnetic interference (EMI) issues, is a growing concern as electronic and telecommunication technologies advance. The resulting urgent demand for EMI shielding materials underscores the need for the development of high-performance, environmentally friendly shielding materials. Here, we assess the impact of multiscale carbon-based hybrid filler on the EMI shielding performance of polyamide 11/poly(lactic acid) composites. The effects of the amounts (0.5 to 5 wt%) of graphene nanoplatelets (GNPs) and multiwalled carbon nanotube (MWCNT) nanofillers in carbon fiber (CF)/GNP and CF/MWCNT-reinforced hybrid composites were comparatively investigated. The composites were fabricated through melt blending/compression molding and subsequently characterized in terms of morphological, fiber length, electrical properties, and EMI shielding effectiveness (EMI SE). Morphological imaging revealed a good adhesion between the fillers and the matrix, indicating a favorable interaction. The fiber length analysis demonstrated that fiber lengths were longer in CF/GNP hybrid composites than in CF/MWCNT. The EMI SE measurements showed the synergistic effects of the fillers in the X and Ku bands. The highest EMI SE values at 10 GHz and 16 GHz for the 20CF-5GNP composite were 34 and 40 dB, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
期刊最新文献
Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Editorial Board, Aims & Scope, Table of Contents Promising Electromagnetic Interference Shielding Materials: Hybrid Fillers Reinforced Bio-Based Composites Editorial Board, Aims & Scope, Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1