Structural Variants Contribute to Phenotypic Variation in Maize.

IF 4.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Ecology Pub Date : 2025-02-13 DOI:10.1111/mec.17662
Nathan S Catlin, Husain I Agha, Adrian E Platts, Manisha Munasinghe, Candice N Hirsch, Emily B Josephs
{"title":"Structural Variants Contribute to Phenotypic Variation in Maize.","authors":"Nathan S Catlin, Husain I Agha, Adrian E Platts, Manisha Munasinghe, Candice N Hirsch, Emily B Josephs","doi":"10.1111/mec.17662","DOIUrl":null,"url":null,"abstract":"<p><p>Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17662"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17662","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic SVs and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic SVs and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterising SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have (1) created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and (2) connected this presence/absence SV variation to diverse traits and GxE interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Ecology
Molecular Ecology 生物-进化生物学
CiteScore
8.40
自引率
10.20%
发文量
472
审稿时长
1 months
期刊介绍: Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include: * population structure and phylogeography * reproductive strategies * relatedness and kin selection * sex allocation * population genetic theory * analytical methods development * conservation genetics * speciation genetics * microbial biodiversity * evolutionary dynamics of QTLs * ecological interactions * molecular adaptation and environmental genomics * impact of genetically modified organisms
期刊最新文献
Structural Variants Contribute to Phenotypic Variation in Maize. Epigenomic Changes in Ostrinia Moths Under Elevated Pupal and Adult Temperature. The Idiot's Guide to Effective Population Size. Culture-Independent Species-Level Taxonomic and Functional Characterisation of Bacteroides, the Core Bacterial Genus Within Reptile Guts. The Roles of Plasticity and Selection in Rapid Phenotypic Changes at the Pacific Oyster Invasion Front in Europe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1