Q Li, N Wang, X Liu, X Sun, X Li, N Du, H Wang, R Wang
{"title":"Coupled hydraulic and whole-plant economic strategies in twenty warm-temperate woody species.","authors":"Q Li, N Wang, X Liu, X Sun, X Li, N Du, H Wang, R Wang","doi":"10.1111/plb.13772","DOIUrl":null,"url":null,"abstract":"<p><p>The iso- to anisohydric continuum describes how plant regulate water potential and has been used to classify species hydraulic strategies. The slow to fast continuum is a whole-plant strategy for resource acquisition and utilization. The relationship between hydraulic and whole-plant economic strategy could provide a comprehensive method for assessing plants performance. We quantified the degree of isohydricity of 20 woody species in a warm temperate forest. We also measured other functional traits associated with hydraulic and economic strategies (leaf gas exchange, pressure-volume traits, predawn and midday water potential, native and maximum stem hydraulic conductivity, Huber value, and wood density), then explored the underlying trade-offs. Pearson correlations and PCA were performed to assess relationships between isohydricity and other functional traits. We found a coordinated series of iso- anisohydric and slow-fast spectra, where species percentage loss of hydraulic conductivity (PLC) and wood density (WD) were the two most powerful proxies. Along the coordinated continuum, the anisohydric species had higher leaf gas exchange, PLC, and water potential at the turgor loss point, and lower WD than the isohydrics. We found that isohydric species have high drought tolerance, giving them a greater chance of survival than the anisohydric species as drought events are anticipated to be more frequent and severe under global climate change. Identification of associated spectra among plant ecological strategies may increase understanding of how woody plants in temperate forests will respond to climate changes.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.13772","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The iso- to anisohydric continuum describes how plant regulate water potential and has been used to classify species hydraulic strategies. The slow to fast continuum is a whole-plant strategy for resource acquisition and utilization. The relationship between hydraulic and whole-plant economic strategy could provide a comprehensive method for assessing plants performance. We quantified the degree of isohydricity of 20 woody species in a warm temperate forest. We also measured other functional traits associated with hydraulic and economic strategies (leaf gas exchange, pressure-volume traits, predawn and midday water potential, native and maximum stem hydraulic conductivity, Huber value, and wood density), then explored the underlying trade-offs. Pearson correlations and PCA were performed to assess relationships between isohydricity and other functional traits. We found a coordinated series of iso- anisohydric and slow-fast spectra, where species percentage loss of hydraulic conductivity (PLC) and wood density (WD) were the two most powerful proxies. Along the coordinated continuum, the anisohydric species had higher leaf gas exchange, PLC, and water potential at the turgor loss point, and lower WD than the isohydrics. We found that isohydric species have high drought tolerance, giving them a greater chance of survival than the anisohydric species as drought events are anticipated to be more frequent and severe under global climate change. Identification of associated spectra among plant ecological strategies may increase understanding of how woody plants in temperate forests will respond to climate changes.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.