Isoxazoles as efficient alkyne amination reagents in divergent heterocycle synthesis.

IF 40.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Society Reviews Pub Date : 2025-02-13 DOI:10.1039/d4cs01329h
Xin-Qi Zhu, Zhi-Xu Meng, Bo Zhou, Ming-Yu Teng, Long-Wu Ye
{"title":"Isoxazoles as efficient alkyne amination reagents in divergent heterocycle synthesis.","authors":"Xin-Qi Zhu, Zhi-Xu Meng, Bo Zhou, Ming-Yu Teng, Long-Wu Ye","doi":"10.1039/d4cs01329h","DOIUrl":null,"url":null,"abstract":"<p><p>During the past decades, the exploration of new alkyne amination reactions has attracted increasing attention due to the high efficiency in heterocycle synthesis. In addition to the well-established alkyne amination reagents (such as nitrogen ylides and azides), isoxazoles and their derivatives have been proven to be efficient amination reagents, especially the N,O-bifunctional reagents of alkynes, in the transition metal-catalyzed transformation of alkynes through metal carbene intermediates. Isoxazole derivatives have been extensively applied to the rapid synthesis of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles in atom-economic manner. In this review, we summarize the latest trends and developments of isoxazole-enabled alkyne amination reactions and their applications in divergent heterocycle synthesis, including amination of ynamides, amination of ynol ethers, amination of thioynol ethers, amination of electron-deficient alkynes, amination of unpolarized alkynes and asymmetric amination of alkynes. Finally, we list the current challenges and opportunities for potential breakthroughs in this field.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" ","pages":""},"PeriodicalIF":40.4000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cs01329h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During the past decades, the exploration of new alkyne amination reactions has attracted increasing attention due to the high efficiency in heterocycle synthesis. In addition to the well-established alkyne amination reagents (such as nitrogen ylides and azides), isoxazoles and their derivatives have been proven to be efficient amination reagents, especially the N,O-bifunctional reagents of alkynes, in the transition metal-catalyzed transformation of alkynes through metal carbene intermediates. Isoxazole derivatives have been extensively applied to the rapid synthesis of a diverse range of structurally complex N-containing molecules, especially the valuable N-heterocycles in atom-economic manner. In this review, we summarize the latest trends and developments of isoxazole-enabled alkyne amination reactions and their applications in divergent heterocycle synthesis, including amination of ynamides, amination of ynol ethers, amination of thioynol ethers, amination of electron-deficient alkynes, amination of unpolarized alkynes and asymmetric amination of alkynes. Finally, we list the current challenges and opportunities for potential breakthroughs in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Society Reviews
Chemical Society Reviews 化学-化学综合
CiteScore
80.80
自引率
1.10%
发文量
345
审稿时长
6.0 months
期刊介绍: Chemical Society Reviews is published by: Royal Society of Chemistry. Focus: Review articles on topics of current interest in chemistry; Predecessors: Quarterly Reviews, Chemical Society (1947–1971); Current title: Since 1971; Impact factor: 60.615 (2021); Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences
期刊最新文献
New reactivity of late 3d transition metal complexes in catalytic reactions of alkynes Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis Surface chemistry-engineered perovskite quantum dot photovoltaics Inside back cover Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1