N-Heterocyclic Carbene Organocatalysis Enabled Modular Synthesis of Fluorinated Isoflavonoids to Suppress Proliferation and Migration in Breast Cancer Cells.
Yan-Qing Liu, Lei-Lei Fu, Long-Hai Hong, Xin-Xin Kou, Xiang Zhang, Rong Zeng, Yong-Qi Zhen, Bo Han, Jun-Long Li
{"title":"N-Heterocyclic Carbene Organocatalysis Enabled Modular Synthesis of Fluorinated Isoflavonoids to Suppress Proliferation and Migration in Breast Cancer Cells.","authors":"Yan-Qing Liu, Lei-Lei Fu, Long-Hai Hong, Xin-Xin Kou, Xiang Zhang, Rong Zeng, Yong-Qi Zhen, Bo Han, Jun-Long Li","doi":"10.1002/advs.202413851","DOIUrl":null,"url":null,"abstract":"<p><p>Isoflavonoids represent a privileged scaffold among various bioactive natural products, rendering their structural diversification through green synthesis and subsequent biological evaluations a compelling research area. In this study, an NHC organocatalytic radical acylalkylation of 1,3-enynes using salicylaldehydes is presented, followed by a cascade intramolecular annulation, yielding a series of fluorinated isoflavone derivatives with substantial yields under environmental-friendly conditions. This approach, distinguished by its excellent modularity and high functional group tolerance, represents an unprecedented organocatalytic 1,3,4-trifunctionalization of 1,3-enynes designed for the green synthesis of bioactive isoflavones in a single step. Furthermore, it is demonstrated that these synthesized fluorinated isoflavonoids effectively suppress proliferation in breast cancer cells, with the most potent compound 8 also inhibiting migration in MDA-MB-231 cells.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413851"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413851","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Isoflavonoids represent a privileged scaffold among various bioactive natural products, rendering their structural diversification through green synthesis and subsequent biological evaluations a compelling research area. In this study, an NHC organocatalytic radical acylalkylation of 1,3-enynes using salicylaldehydes is presented, followed by a cascade intramolecular annulation, yielding a series of fluorinated isoflavone derivatives with substantial yields under environmental-friendly conditions. This approach, distinguished by its excellent modularity and high functional group tolerance, represents an unprecedented organocatalytic 1,3,4-trifunctionalization of 1,3-enynes designed for the green synthesis of bioactive isoflavones in a single step. Furthermore, it is demonstrated that these synthesized fluorinated isoflavonoids effectively suppress proliferation in breast cancer cells, with the most potent compound 8 also inhibiting migration in MDA-MB-231 cells.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.