{"title":"Boosting Biotic Stress Resistance in Solanum melongena L.: The Role of Exogenous Chlorogenic Acid in Enhancing Secondary Metabolite Production.","authors":"Pratik Talukder, Sounak Chanda, Baishakhi Sinha","doi":"10.1007/s12010-025-05194-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Solanum melongena Linnaeus (brinjal) belongs to the Solanaceae family and is also known as eggplant. It is one of the most common vegetables that is grown abundantly and consumed by a large number of people. However, it is found to be highly susceptible to harmful pests such as brinjal shoot and fruit borer, (Leucinodes orbonalis) which are responsible for causing severe damage to the plant's health and, correspondingly, its yield. Damages include shoot and leaf spoilage which leads to overall hampering of the metabolic process of the plant. This study aims to suggest that the plant, Solanum melongena L., has certain self-induced mechanisms to withstand these stress and pest attacks by secreting compounds known as \"Chlorogenic Acid.\" Chlorogenic acid is known to be a plant-derived product and is a part of secondary metabolites. Different plant parts were examined for their diverse secondary metabolite content under laboratory conditions. The study was further proceeded by implementing chlorogenic acid exogenously, on the pest-infected plants at a concentration of 1 mg/ml in two different foliar sprays, one consisting of simple water and another 50% ethanol. Moreover, molecular analysis shows a higher expression of the genes which are pivotal for the secretion of chlorogenic acid within the plant itself. The results of this research reveal that chlorogenic acid exhibits a massive potential in controlling pest attacks against Solanum melongena L. and can be used as a potential bio-pesticide.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05194-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Solanum melongena Linnaeus (brinjal) belongs to the Solanaceae family and is also known as eggplant. It is one of the most common vegetables that is grown abundantly and consumed by a large number of people. However, it is found to be highly susceptible to harmful pests such as brinjal shoot and fruit borer, (Leucinodes orbonalis) which are responsible for causing severe damage to the plant's health and, correspondingly, its yield. Damages include shoot and leaf spoilage which leads to overall hampering of the metabolic process of the plant. This study aims to suggest that the plant, Solanum melongena L., has certain self-induced mechanisms to withstand these stress and pest attacks by secreting compounds known as "Chlorogenic Acid." Chlorogenic acid is known to be a plant-derived product and is a part of secondary metabolites. Different plant parts were examined for their diverse secondary metabolite content under laboratory conditions. The study was further proceeded by implementing chlorogenic acid exogenously, on the pest-infected plants at a concentration of 1 mg/ml in two different foliar sprays, one consisting of simple water and another 50% ethanol. Moreover, molecular analysis shows a higher expression of the genes which are pivotal for the secretion of chlorogenic acid within the plant itself. The results of this research reveal that chlorogenic acid exhibits a massive potential in controlling pest attacks against Solanum melongena L. and can be used as a potential bio-pesticide.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.