Calcium Release-Activated Calcium Modulator ORAI1-Sensitive Serine Dehydratase Regulates Fatty Acid-Induced CD4+ Th17/Treg Imbalance in Dairy Cows.

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animals Pub Date : 2025-01-30 DOI:10.3390/ani15030388
Bingbing Zhang, Jingjing Wang, Ming Li, Jianan Wen, Juan J Loor, Shuang Wang, Ziwei Ji, Xinquan Lv, Guihua Wang, Cheng Xia, Wei Yang, Chuang Xu
{"title":"Calcium Release-Activated Calcium Modulator ORAI1-Sensitive Serine Dehydratase Regulates Fatty Acid-Induced CD4<sup>+</sup> Th17/Treg Imbalance in Dairy Cows.","authors":"Bingbing Zhang, Jingjing Wang, Ming Li, Jianan Wen, Juan J Loor, Shuang Wang, Ziwei Ji, Xinquan Lv, Guihua Wang, Cheng Xia, Wei Yang, Chuang Xu","doi":"10.3390/ani15030388","DOIUrl":null,"url":null,"abstract":"<p><p>High concentrations of free fatty acids (FFAs) caused by negative energy balance render the cow more prone to inflammatory diseases in part due to an imbalance in the types of immune cells and their specific functions. We previously demonstrated that ORAI calcium release-activated calcium modulator 1 (ORAI1) was associated with increased CD4<sup>+</sup> Th17 content, but the precise mechanisms remain unclear. The purpose of this study was to evaluate the efficacy of FFAs on CD4<sup>+</sup> T cell inflammatory response. High FFAs in dairy cows caused the transcript level of the pro-inflammatory factor <i>IL-17A</i>, plasma concentration of IL-17A, and amount of intracellular IL-17A to increase while the transcript levels and intracellular amount of the anti-inflammatory factor FOXP3 were downregulated. These changes indicated Th17/Treg imbalance and inflammation in dairy cows with high FFA. Moreover, ORAI1 and SDS abundance was elevated in dairy cows with high FFAs by transcriptomics, QPCR, and Western blot. Knockdown of SDS (siSDS) did not alter <i>ORAI1</i> expression in CD4<sup>+</sup> T cells from high-FFA cows, while it decreased the expression of inflammatory factors. Transfection of CD4<sup>+</sup> T cells using siRNA knockdown for ORAI1 (siORAI1) revealed that <i>SDS</i> and inflammatory factor abundance decreased. Serine can be catabolized to pyruvate by the action of serine dehydratase (SDS). Data from this study suggested that high FFAs caused by negative energy balance after calving regulates the Th17/Treg balance via SDS, but SDS does not regulate ORAI1 abundance. The above data suggested a pro-inflammatory mechanism in CD4<sup>+</sup> T cells regulated by the ORAI1-sensitive SDS pathway in early postpartum cows experiencing high-FFA conditions. Thus, targeting this pathway may represent a new therapeutic and interventional approach for preventing immune-related disorders around parturition.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815743/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15030388","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High concentrations of free fatty acids (FFAs) caused by negative energy balance render the cow more prone to inflammatory diseases in part due to an imbalance in the types of immune cells and their specific functions. We previously demonstrated that ORAI calcium release-activated calcium modulator 1 (ORAI1) was associated with increased CD4+ Th17 content, but the precise mechanisms remain unclear. The purpose of this study was to evaluate the efficacy of FFAs on CD4+ T cell inflammatory response. High FFAs in dairy cows caused the transcript level of the pro-inflammatory factor IL-17A, plasma concentration of IL-17A, and amount of intracellular IL-17A to increase while the transcript levels and intracellular amount of the anti-inflammatory factor FOXP3 were downregulated. These changes indicated Th17/Treg imbalance and inflammation in dairy cows with high FFA. Moreover, ORAI1 and SDS abundance was elevated in dairy cows with high FFAs by transcriptomics, QPCR, and Western blot. Knockdown of SDS (siSDS) did not alter ORAI1 expression in CD4+ T cells from high-FFA cows, while it decreased the expression of inflammatory factors. Transfection of CD4+ T cells using siRNA knockdown for ORAI1 (siORAI1) revealed that SDS and inflammatory factor abundance decreased. Serine can be catabolized to pyruvate by the action of serine dehydratase (SDS). Data from this study suggested that high FFAs caused by negative energy balance after calving regulates the Th17/Treg balance via SDS, but SDS does not regulate ORAI1 abundance. The above data suggested a pro-inflammatory mechanism in CD4+ T cells regulated by the ORAI1-sensitive SDS pathway in early postpartum cows experiencing high-FFA conditions. Thus, targeting this pathway may represent a new therapeutic and interventional approach for preventing immune-related disorders around parturition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
期刊最新文献
A History of Pain Studies and Changing Attitudes to the Welfare of Crustaceans. Individual Cow Recognition Based on Ultra-Wideband and Computer Vision. Dietary Effects of Different Proportions of Fermented Straw as a Corn Replacement on the Growth Performance and Intestinal Health of Finishing Pigs. Recent Issues in the Development and Application of Targeted Therapies with Respect to Individual Animal Variability. Risk Assessment of Global Animal Melioidosis Under Current and Future Climate Scenarios.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1