Comparative analysis of electrical signals in facial expression muscles.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL BioMedical Engineering OnLine Pub Date : 2025-02-12 DOI:10.1186/s12938-025-01350-3
Luna Adamov, Bojan Petrović, Lazar Milić, Vojin Štrbac, Sanja Kojić, Karunan Joseph, Goran M Stojanović
{"title":"Comparative analysis of electrical signals in facial expression muscles.","authors":"Luna Adamov, Bojan Petrović, Lazar Milić, Vojin Štrbac, Sanja Kojić, Karunan Joseph, Goran M Stojanović","doi":"10.1186/s12938-025-01350-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Facial expression muscles serve a fundamental role in the orofacial system, significantly influencing the overall health and well-being of an individual. They are essential for performing basic functions such as speech, chewing, and swallowing. The purpose of this study was to determine whether surface electromyography could be used to evaluate the health, function, or dysfunction of three facial muscles by measuring their electrical activity in healthy people. Additionally, to ascertain whether pattern recognition and artificial intelligence may be used for tasks that differ from one another.</p><p><strong>Results: </strong>The study included 24 participants and examined three muscles (m. Orbicularis Oris, m. Zygomaticus Major, and m. Mentalis) during five different facial expressions. Prior to thorough statistical analysis, features were extracted from the acquired electromyographs. Finally, classification was done with the use of logistic regression, random forest classifier and linear discriminant analysis. A statistically significant difference in muscle activity amplitudes was demonstrated between muscles, enabling the tracking of individual muscle activity for diagnostic and therapeutic purposes. Additionally other time domain and frequency domain features were analyzed, showing statistical significance in differentiation between muscles as well. Examples of pattern recognition showed promising avenues for further research and development.</p><p><strong>Conclusion: </strong>Surface electromyography is a useful method for assessing the function of facial expression muscles, significantly contributing to the diagnosis and treatment of oral motor function disorders. Results of this study show potential for further research and development in this field of research.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"17"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01350-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Facial expression muscles serve a fundamental role in the orofacial system, significantly influencing the overall health and well-being of an individual. They are essential for performing basic functions such as speech, chewing, and swallowing. The purpose of this study was to determine whether surface electromyography could be used to evaluate the health, function, or dysfunction of three facial muscles by measuring their electrical activity in healthy people. Additionally, to ascertain whether pattern recognition and artificial intelligence may be used for tasks that differ from one another.

Results: The study included 24 participants and examined three muscles (m. Orbicularis Oris, m. Zygomaticus Major, and m. Mentalis) during five different facial expressions. Prior to thorough statistical analysis, features were extracted from the acquired electromyographs. Finally, classification was done with the use of logistic regression, random forest classifier and linear discriminant analysis. A statistically significant difference in muscle activity amplitudes was demonstrated between muscles, enabling the tracking of individual muscle activity for diagnostic and therapeutic purposes. Additionally other time domain and frequency domain features were analyzed, showing statistical significance in differentiation between muscles as well. Examples of pattern recognition showed promising avenues for further research and development.

Conclusion: Surface electromyography is a useful method for assessing the function of facial expression muscles, significantly contributing to the diagnosis and treatment of oral motor function disorders. Results of this study show potential for further research and development in this field of research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
期刊最新文献
Calculation of recovery coefficients for partial volume effect correction in PET/CT imaging using a customized anthropomorphic body phantom. A review on diagnostic assessments of tracheal stenosis. Preclinical evaluation of a hydraulic actuation system with guide tube for robotic cochlear implant electrode insertion. Comparative analysis of electrical signals in facial expression muscles. Diffused Multi-scale Generative Adversarial Network for low-dose PET images reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1