{"title":"Morphology-Based In-Ovo Sexing of Chick Embryos Utilizing a Low-Cost Imaging Apparatus and Machine Learning.","authors":"Daniel Zhang, Leonie Jacobs","doi":"10.3390/ani15030384","DOIUrl":null,"url":null,"abstract":"<p><p>The routine culling of male chicks in the laying hen industry raises significant ethical, animal welfare, and sustainability concerns. Current methods to determine chick embryo sex before hatching are costly, time-consuming, and invasive. This study aimed to develop a low-cost, non-invasive solution to predict chick embryo sex before hatching using the morphological features of eggs. A custom imaging apparatus was created using a smartphone and light box, enabling consistent image capture of chicken eggs. Egg length, width, area, eccentricity, and extent were measured, and machine learning models were trained to predict chick embryo sex. The wide neural network model achieved the highest accuracy of 88.9% with a mean accuracy of 81.5%. Comparison of the imaging apparatus to a high-cost industrial 3D scanner demonstrated comparable accuracy in capturing egg morphology. The findings suggest that this method can contribute to the prevention of up to 6.2 billion male chicks from being culled annually by destroying male embryos before they develop the capacity to feel pain. This approach offers a feasible, ethical, and scalable alternative to current practices, with potential for further improvements in accuracy and adaptability to different industry settings.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816025/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15030384","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The routine culling of male chicks in the laying hen industry raises significant ethical, animal welfare, and sustainability concerns. Current methods to determine chick embryo sex before hatching are costly, time-consuming, and invasive. This study aimed to develop a low-cost, non-invasive solution to predict chick embryo sex before hatching using the morphological features of eggs. A custom imaging apparatus was created using a smartphone and light box, enabling consistent image capture of chicken eggs. Egg length, width, area, eccentricity, and extent were measured, and machine learning models were trained to predict chick embryo sex. The wide neural network model achieved the highest accuracy of 88.9% with a mean accuracy of 81.5%. Comparison of the imaging apparatus to a high-cost industrial 3D scanner demonstrated comparable accuracy in capturing egg morphology. The findings suggest that this method can contribute to the prevention of up to 6.2 billion male chicks from being culled annually by destroying male embryos before they develop the capacity to feel pain. This approach offers a feasible, ethical, and scalable alternative to current practices, with potential for further improvements in accuracy and adaptability to different industry settings.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).