Sleep Apnea Detection Using EEG: A Systematic Review of Datasets, Methods, Challenges, and Future Directions

IF 5.4 2区 医学 Q3 ENGINEERING, BIOMEDICAL Annals of Biomedical Engineering Pub Date : 2025-02-12 DOI:10.1007/s10439-025-03691-5
Shireen Fathima, Maaz Ahmed
{"title":"Sleep Apnea Detection Using EEG: A Systematic Review of Datasets, Methods, Challenges, and Future Directions","authors":"Shireen Fathima,&nbsp;Maaz Ahmed","doi":"10.1007/s10439-025-03691-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Sleep Apnea (SA) affects an estimated 936 million adults globally, posing a significant public health concern. The gold standard for diagnosing SA, polysomnography, is costly and uncomfortable. Electroencephalogram (EEG)-based SA detection is promising due to its ability to capture distinctive sleep stage-related characteristics across different sub-band frequencies. This study aims to review and analyze research from the past decade on the potential of EEG signals in SA detection and classification focusing on various deep learning and machine learning techniques, including signal decomposition, feature extraction, feature selection, and classification methodologies.</p><h3>Method</h3><p>A systematic literature review using the preferred reporting items for systematic reviews and meta-Analysis (PRISMA) and PICO guidelines was conducted across 5 databases for publications from January 2010 to December 2024.</p><h3>Results</h3><p>The review involved screening a total of 402 papers, with 63 selected for in-depth analysis to provide valuable insights into the application of EEG signals for SA detection. The findings underscore the potential of EEG-based methods in improving SA diagnosis.</p><h3>Conclusion</h3><p>This study provides valuable insights, showcasing significant advancements while identifying key areas for further exploration, thereby laying a strong foundation for future research in EEG-based SA detection.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"53 5","pages":"1043 - 1067"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-025-03691-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Sleep Apnea (SA) affects an estimated 936 million adults globally, posing a significant public health concern. The gold standard for diagnosing SA, polysomnography, is costly and uncomfortable. Electroencephalogram (EEG)-based SA detection is promising due to its ability to capture distinctive sleep stage-related characteristics across different sub-band frequencies. This study aims to review and analyze research from the past decade on the potential of EEG signals in SA detection and classification focusing on various deep learning and machine learning techniques, including signal decomposition, feature extraction, feature selection, and classification methodologies.

Method

A systematic literature review using the preferred reporting items for systematic reviews and meta-Analysis (PRISMA) and PICO guidelines was conducted across 5 databases for publications from January 2010 to December 2024.

Results

The review involved screening a total of 402 papers, with 63 selected for in-depth analysis to provide valuable insights into the application of EEG signals for SA detection. The findings underscore the potential of EEG-based methods in improving SA diagnosis.

Conclusion

This study provides valuable insights, showcasing significant advancements while identifying key areas for further exploration, thereby laying a strong foundation for future research in EEG-based SA detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用脑电图检测睡眠呼吸暂停:对数据集、方法、挑战和未来方向的系统回顾。
目的:睡眠呼吸暂停(SA)影响全球约9.36亿成年人,造成了重大的公共卫生问题。诊断SA的黄金标准,即多导睡眠图,既昂贵又不舒服。基于脑电图(EEG)的SA检测是有前途的,因为它能够在不同的子频带频率上捕获不同的睡眠阶段相关特征。本研究旨在回顾和分析过去十年来关于脑电信号在SA检测和分类中的潜力的研究,重点是各种深度学习和机器学习技术,包括信号分解、特征提取、特征选择和分类方法。方法:对2010年1月至2024年12月5个数据库的出版物,采用系统评价和荟萃分析的首选报告项目(PRISMA)和PICO指南进行系统文献综述。结果:本次综述共筛选了402篇论文,筛选出63篇进行深入分析,为脑电图信号在SA检测中的应用提供了有价值的见解。这些发现强调了基于脑电图的方法在提高SA诊断方面的潜力。结论:本研究提供了有价值的见解,展示了重大进展,同时确定了进一步探索的关键领域,从而为未来基于脑电图的SA检测研究奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
期刊最新文献
Influence of breathing-induced motion on hemodynamics following fEVAR with renal stenting. Advances in Hyperbaric Oxygen Therapy: Medical Benefits and Technical Perspectives. Human-AI Systems in Medicine: Outskilling Versus Newskilling. Longitudinal Live Imaging-Derived 4D Hemodynamics and Dynamic Tissue Mechanics Across Outflow Tract Morphogenesis. Estimation of Recommended Damping Coefficient Range to Achieve Target Peak Knee Flexion in a Passive Prosthetic Knee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1