{"title":"Methionine regulates maternal-fetal immune tolerance and endometrial receptivity by enhancing embryonic IL-5 secretion.","authors":"Shuang Cai, Bangxin Xue, Siyu Li, Xinyu Wang, Xiangzhou Zeng, Zhekun Zhu, Xinyin Fan, Yijin Zou, Haitao Yu, Shiyan Qiao, Xiangfang Zeng","doi":"10.1016/j.celrep.2025.115291","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial receptivity and maternal-fetal immune tolerance are two crucial processes for a successful pregnancy. However, the molecular mechanisms of nutrition involved are largely unexplored. Here, we showed that maternal methionine supply significantly improved pregnancy outcomes, which was closely related to interleukin-5 (IL-5) concentration. Mechanistically, methionine induced embryonic IL-5 secretion, which enhanced the conversion of CD4<sup>+</sup> T cells to IL-5<sup>+</sup> Th2 cells in the uterus, thereby improving maternal-fetal immune tolerance. Meanwhile, methionine-mediated IL-5 secretion activated the nuclear factor κB (NF-κB) pathway and enhanced integrin αvβ3 expression in endometrial cells, which improved endometrial receptivity. Further, methionine strongly influenced the DNA methylation and transcription levels of the transcription factor eomesodermin (Eomes), which bound directly to the IL-5 promoter region and inhibited IL-5 transcription. Methionine modulated IL-5 transcription, maternal-fetal immune tolerance, and endometrial receptivity via its effects on Eomes. This study reveals the crucial functions of methionine and IL-5 and offers a potential nutritional strategy for successful pregnancy.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115291"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115291","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometrial receptivity and maternal-fetal immune tolerance are two crucial processes for a successful pregnancy. However, the molecular mechanisms of nutrition involved are largely unexplored. Here, we showed that maternal methionine supply significantly improved pregnancy outcomes, which was closely related to interleukin-5 (IL-5) concentration. Mechanistically, methionine induced embryonic IL-5 secretion, which enhanced the conversion of CD4+ T cells to IL-5+ Th2 cells in the uterus, thereby improving maternal-fetal immune tolerance. Meanwhile, methionine-mediated IL-5 secretion activated the nuclear factor κB (NF-κB) pathway and enhanced integrin αvβ3 expression in endometrial cells, which improved endometrial receptivity. Further, methionine strongly influenced the DNA methylation and transcription levels of the transcription factor eomesodermin (Eomes), which bound directly to the IL-5 promoter region and inhibited IL-5 transcription. Methionine modulated IL-5 transcription, maternal-fetal immune tolerance, and endometrial receptivity via its effects on Eomes. This study reveals the crucial functions of methionine and IL-5 and offers a potential nutritional strategy for successful pregnancy.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.