Elham Adabi, Filippos T Charitidis, Frederic B Thalheimer, Mar Guaza-Lasheras, Colin Clarke, Christian J Buchholz
{"title":"Enhanced conversion of T cells into CAR T cells by modulation of the MAPK/ERK pathway.","authors":"Elham Adabi, Filippos T Charitidis, Frederic B Thalheimer, Mar Guaza-Lasheras, Colin Clarke, Christian J Buchholz","doi":"10.1016/j.xcrm.2025.101970","DOIUrl":null,"url":null,"abstract":"<p><p>Delivery of chimeric antigen receptors (CARs) to T cells is usually mediated by lentiviral vectors (LVs), which can have broad tropism or be T cell targeted. To better understand the molecular events during CAR T cell generation, T cell transduction with four different LVs is followed by single-cell multi-omics analysis, distinguishing between transduced T cells and T cells with vector signal but no CAR. We find that only a fraction of the T cells that encounter vectors convert into CAR T cells. Single-cell transcriptome data reveal that interferon-stimulated genes are upregulated in non-transduced cells, whereas extracellular signal-regulated kinase (ERK)2 phosphatases are upregulated in CAR T cells. This expression pattern is evident in CAR T cells from healthy donors and patients. The role of the mitogen-activated protein kinase (MAPK)/ERK pathway in CAR T cell generation is confirmed by chemical inhibitors. These data provide molecular insights into T cell transduction with implications for improving CAR T cell generation.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101970"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.101970","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Delivery of chimeric antigen receptors (CARs) to T cells is usually mediated by lentiviral vectors (LVs), which can have broad tropism or be T cell targeted. To better understand the molecular events during CAR T cell generation, T cell transduction with four different LVs is followed by single-cell multi-omics analysis, distinguishing between transduced T cells and T cells with vector signal but no CAR. We find that only a fraction of the T cells that encounter vectors convert into CAR T cells. Single-cell transcriptome data reveal that interferon-stimulated genes are upregulated in non-transduced cells, whereas extracellular signal-regulated kinase (ERK)2 phosphatases are upregulated in CAR T cells. This expression pattern is evident in CAR T cells from healthy donors and patients. The role of the mitogen-activated protein kinase (MAPK)/ERK pathway in CAR T cell generation is confirmed by chemical inhibitors. These data provide molecular insights into T cell transduction with implications for improving CAR T cell generation.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.