Liuzi Du, Xiaowei Huang, Zhihua Li, Zhou Qin, Ning Zhang, Xiaodong Zhai, Jiyong Shi, Junjun Zhang, Tingting Shen, Roujia Zhang, Yansong Wang
{"title":"Application of Smart Packaging in Fruit and Vegetable Preservation: A Review.","authors":"Liuzi Du, Xiaowei Huang, Zhihua Li, Zhou Qin, Ning Zhang, Xiaodong Zhai, Jiyong Shi, Junjun Zhang, Tingting Shen, Roujia Zhang, Yansong Wang","doi":"10.3390/foods14030447","DOIUrl":null,"url":null,"abstract":"<p><p>The application of smart packaging technology in fruit and vegetable preservation has shown significant potential with the ongoing advancement of science and technology. Smart packaging leverages advanced sensors, smart materials, and Internet of Things (IoT) technologies to monitor and regulate the storage environment of fruits and vegetables in real time. This approach effectively extends shelf life, enhances food safety, and reduces food waste. The principle behind smart packaging involves real-time monitoring of environmental factors, such as temperature, humidity, and gas concentrations, with precise adjustments based on data analysis to ensure optimal storage conditions for fruits and vegetables. Smart packaging technologies encompass various functions, including antibacterial action, humidity regulation, and gas control. These functions enable the packaging to automatically adjust its internal environment according to the specific requirements of different fruits and vegetables, thereby slowing the growth of bacteria and mold, prolonging freshness, and retaining nutritional content. Despite its advantages, the widespread adoption of smart packaging technology faces several challenges, including high costs, limited material diversity and reliability, lack of standardization, and consumer acceptance. However, as technology matures, costs decrease, and degradable smart packaging materials are developed, smart packaging is expected to play a more prominent role in fruit and vegetable preservation. Future developments are likely to focus on material innovation, deeper integration of IoT and big data, and the promotion of environmentally sustainable packaging solutions, all of which will drive the fruit and vegetable preservation industry toward greater efficiency, intelligence, and sustainability.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14030447","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of smart packaging technology in fruit and vegetable preservation has shown significant potential with the ongoing advancement of science and technology. Smart packaging leverages advanced sensors, smart materials, and Internet of Things (IoT) technologies to monitor and regulate the storage environment of fruits and vegetables in real time. This approach effectively extends shelf life, enhances food safety, and reduces food waste. The principle behind smart packaging involves real-time monitoring of environmental factors, such as temperature, humidity, and gas concentrations, with precise adjustments based on data analysis to ensure optimal storage conditions for fruits and vegetables. Smart packaging technologies encompass various functions, including antibacterial action, humidity regulation, and gas control. These functions enable the packaging to automatically adjust its internal environment according to the specific requirements of different fruits and vegetables, thereby slowing the growth of bacteria and mold, prolonging freshness, and retaining nutritional content. Despite its advantages, the widespread adoption of smart packaging technology faces several challenges, including high costs, limited material diversity and reliability, lack of standardization, and consumer acceptance. However, as technology matures, costs decrease, and degradable smart packaging materials are developed, smart packaging is expected to play a more prominent role in fruit and vegetable preservation. Future developments are likely to focus on material innovation, deeper integration of IoT and big data, and the promotion of environmentally sustainable packaging solutions, all of which will drive the fruit and vegetable preservation industry toward greater efficiency, intelligence, and sustainability.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds