Super-Fast Detection of Bacillus cereus by Combining Cellulose Filter Paper-Based DNA Extraction, Multienzyme Isothermal Rapid Amplification, and Lateral Flow Dipstick (MIRA-LFD).

IF 4.7 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Foods Pub Date : 2025-01-30 DOI:10.3390/foods14030454
Shuqiong Yi, Nali Zhou, Yan Ma, Lunzhao Yi, Ying Shang
{"title":"Super-Fast Detection of <i>Bacillus cereus</i> by Combining Cellulose Filter Paper-Based DNA Extraction, Multienzyme Isothermal Rapid Amplification, and Lateral Flow Dipstick (MIRA-LFD).","authors":"Shuqiong Yi, Nali Zhou, Yan Ma, Lunzhao Yi, Ying Shang","doi":"10.3390/foods14030454","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bacillus cereus</i> is a widespread foodborne pathogen that can cause food poisoning when present in food at certain levels. Ingesting contaminated food may lead to symptoms such as abdominal pain, diarrhea, and, in severe cases, life-threatening conditions. In this study, a simple and super-fast method for detecting <i>B. cereus</i> was developed, which combines cellulose filter paper-based DNA extraction, multienzyme isothermal rapid amplification (MIRA), and lateral flow dipstick (LFD) technology. Initially, PCR was adopted to evaluate the DNA extraction efficiency of the filter paper, followed by the optimization of the lysis formula and extraction conditions. With the above optimization, DNA that can be used for subsequent nucleic acid amplification can be obtained within 3 min. Then, the isothermal amplification of MIRA-LFD was established and optimized to evaluate the detection specificity and sensitivity. Finally, the developed method was applied to detect <i>B. cereus</i> in cooked rice samples. The results indicated that the entire amplification procedure of MIRA-LFD only takes 15 min at 39 °C. The whole super-fast detection system could be completed in less than 20 min, from DNA extraction to result interpretation, which achieved a detection limit of 12 fg/μL of DNA concentration, corresponding to approximately 115 CFU/mL in actual samples.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817700/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14030454","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacillus cereus is a widespread foodborne pathogen that can cause food poisoning when present in food at certain levels. Ingesting contaminated food may lead to symptoms such as abdominal pain, diarrhea, and, in severe cases, life-threatening conditions. In this study, a simple and super-fast method for detecting B. cereus was developed, which combines cellulose filter paper-based DNA extraction, multienzyme isothermal rapid amplification (MIRA), and lateral flow dipstick (LFD) technology. Initially, PCR was adopted to evaluate the DNA extraction efficiency of the filter paper, followed by the optimization of the lysis formula and extraction conditions. With the above optimization, DNA that can be used for subsequent nucleic acid amplification can be obtained within 3 min. Then, the isothermal amplification of MIRA-LFD was established and optimized to evaluate the detection specificity and sensitivity. Finally, the developed method was applied to detect B. cereus in cooked rice samples. The results indicated that the entire amplification procedure of MIRA-LFD only takes 15 min at 39 °C. The whole super-fast detection system could be completed in less than 20 min, from DNA extraction to result interpretation, which achieved a detection limit of 12 fg/μL of DNA concentration, corresponding to approximately 115 CFU/mL in actual samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Foods
Foods Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
15.40%
发文量
3516
审稿时长
15.83 days
期刊介绍: Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Ÿ manuscripts regarding research proposals and research ideas will be particularly welcomed Ÿ electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material Ÿ we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds
期刊最新文献
Research on Rapid and Non-Destructive Detection of Coffee Powder Adulteration Based on Portable Near-Infrared Spectroscopy Technology. Application of Isochoric Impregnation: Effects on Microbial and Physicochemical Parameters and Shelf Life of Strawberries Stored Under Refrigeration. Effects of Drip Irrigations with Different Irrigation Intervals and Levels on Nutritional Traits of Paddy Cultivars. Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities. A Colorimetric LAMP Assay for Salmonella spp. Detection: Towards a DNA Extraction-Free Approach for Pathogen Screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1