{"title":"Geographical Origin Traceability of Navel Oranges Based on Near-Infrared Spectroscopy Combined with Deep Learning.","authors":"Yue Li, Zhong Ren, Chunyan Zhao, Gaoqiang Liang","doi":"10.3390/foods14030484","DOIUrl":null,"url":null,"abstract":"<p><p>The quality and price of navel oranges vary depending on their geographical origin, thus providing a financial incentive for origin fraud. To prevent this phenomenon, it is necessary to explore a fast, non-destructive, and precise method for tracing the origin of navel oranges. In this study, a total of 490 Newhall navel oranges were selected from five major production regions in China, and the diffuse reflectance near-infrared spectrum in 4000-10,000 cm<sup>-1</sup> were non-invasively collected. We examined seven preprocessing techniques for the spectra, including Savitzky-Golay (SG) smoothing, first derivative (FD), multiplicative scattering correction (MSC), combinations of SG with MSC (SG+MSC), SG with FD (SG+FD), MSC with FD (MSC+FD), and three combined (SG+MSC+FD). A one-dimensional convolutional neural network (1DCNN) deep learning model for geographical origin tracing of navel orange was established, and five machine learning algorithms, i.e., partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), and back-propagation neural network (BPNN), were compared with 1DCNN. The results show that the 1DCNN model based on the SG+FD preprocessing method achieved the optimal performance for the testing set, with prediction accuracy, precision, recall, and F1-score of 97.92%, 98%, 97.95%, and 97.90%, respectively. Therefore, NIRS combined with deep learning has a significant research and application value in the rapid, nondestructive, and accurate geographical origin traceability of agricultural products.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 3","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11816386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14030484","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The quality and price of navel oranges vary depending on their geographical origin, thus providing a financial incentive for origin fraud. To prevent this phenomenon, it is necessary to explore a fast, non-destructive, and precise method for tracing the origin of navel oranges. In this study, a total of 490 Newhall navel oranges were selected from five major production regions in China, and the diffuse reflectance near-infrared spectrum in 4000-10,000 cm-1 were non-invasively collected. We examined seven preprocessing techniques for the spectra, including Savitzky-Golay (SG) smoothing, first derivative (FD), multiplicative scattering correction (MSC), combinations of SG with MSC (SG+MSC), SG with FD (SG+FD), MSC with FD (MSC+FD), and three combined (SG+MSC+FD). A one-dimensional convolutional neural network (1DCNN) deep learning model for geographical origin tracing of navel orange was established, and five machine learning algorithms, i.e., partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), support vector machine (SVM), random forest (RF), and back-propagation neural network (BPNN), were compared with 1DCNN. The results show that the 1DCNN model based on the SG+FD preprocessing method achieved the optimal performance for the testing set, with prediction accuracy, precision, recall, and F1-score of 97.92%, 98%, 97.95%, and 97.90%, respectively. Therefore, NIRS combined with deep learning has a significant research and application value in the rapid, nondestructive, and accurate geographical origin traceability of agricultural products.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds