Dachsous is a key player in epithelial wound closure by modulating cell shape changes and tissue mechanics.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Journal of cell science Pub Date : 2025-02-13 DOI:10.1242/jcs.263674
Patrícia Porfírio-Rodrigues, Telmo Pereira, Antonio Jacinto, Lara Carvalho
{"title":"Dachsous is a key player in epithelial wound closure by modulating cell shape changes and tissue mechanics.","authors":"Patrícia Porfírio-Rodrigues, Telmo Pereira, Antonio Jacinto, Lara Carvalho","doi":"10.1242/jcs.263674","DOIUrl":null,"url":null,"abstract":"<p><p>Epithelia are vital tissues in multicellular organisms, acting as barriers between external and internal environments. Simple epithelia, such as pg those in embryos and the adult gut, have the remarkable ability to repair wounds efficiently, making them ideal for studying epithelial repair mechanisms. In these tissues, wound closure involves the coordinated action of a contractile actomyosin cable at the wound edge and collective cell movements around the wound. However, the dynamics of cell-cell interactions during this process remain poorly understood. Here, we demonstrate that Dachsous (Ds), an atypical cadherin associated with Planar Cell Polarity, is crucial for efficient epithelial repair in the Drosophila embryo. We show that the absence of Ds alters tissue mechanics and cell shape changes and rearrangements, leading to slower wound closure. Additionally, we reveal that Occluding Junctions are necessary for the proper apical localization of Ds, uncovering an unanticipated interaction between these two molecular complexes. This study identifies Ds as a novel key player in epithelial repair and highlights the need for further investigating the molecular mechanisms by which Ds modulates cell shape and tissue morphogenesis.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263674","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epithelia are vital tissues in multicellular organisms, acting as barriers between external and internal environments. Simple epithelia, such as pg those in embryos and the adult gut, have the remarkable ability to repair wounds efficiently, making them ideal for studying epithelial repair mechanisms. In these tissues, wound closure involves the coordinated action of a contractile actomyosin cable at the wound edge and collective cell movements around the wound. However, the dynamics of cell-cell interactions during this process remain poorly understood. Here, we demonstrate that Dachsous (Ds), an atypical cadherin associated with Planar Cell Polarity, is crucial for efficient epithelial repair in the Drosophila embryo. We show that the absence of Ds alters tissue mechanics and cell shape changes and rearrangements, leading to slower wound closure. Additionally, we reveal that Occluding Junctions are necessary for the proper apical localization of Ds, uncovering an unanticipated interaction between these two molecular complexes. This study identifies Ds as a novel key player in epithelial repair and highlights the need for further investigating the molecular mechanisms by which Ds modulates cell shape and tissue morphogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
期刊最新文献
Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. Fis1 regulates mitochondrial morphology, bioenergetics and removal of mitochondrial DNA damage in irradiated glioblastoma cells. Mitochondria-plasma membrane contact sites regulate the ER-mitochondria encounter structure. Dachsous is a key player in epithelial wound closure by modulating cell shape changes and tissue mechanics. Potential ER tubular lumen-sensing intrinsically disordered regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1