{"title":"Development of linagliptin-loaded liposomes using aspartic acid conjugate for bone-targeted delivery to combat osteoporosis.","authors":"Nikita Nirwan, Yakkala Prasanna Anjaneyulu, Yasmin Sultana, Divya Vohora","doi":"10.1080/1061186X.2025.2467089","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis is a common metabolic bone disorder that requires new treatment strategies. Linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, is a proven osteogenic agent in diabetes-linked bone loss. However, poor solubility, low oral bioavailability and inadequate bone-targeting limit its use in osteoporosis. We have successfully developed the bone-targeted liposomes of linagliptin using an aspartic acid conjugate, that is poly (aspartic acid-co-lactide)-1,2-dipalmitoyl-sn-glycero-3-phospho ethanolamine (PAL-DPPE), which was prior synthesised and identified using FTIR and NMR. Liposomes were evaluated for particle size, encapsulation efficacy, drug loading and release study in addition to <i>in vitro</i> hydroxyapatite binding ability. To determine the anti-osteoporosis effect of liposomes, <i>in vivo</i> testing was performed in glucocorticoid-induced osteoporosis model in mice. Bone targeted liposomes of linagliptin having particle size of 281.7 nm and hydroxyapatite affinity of 89% significantly improved the bone architecture parameters and bone mineral density in micro-computed tomography analysis. Further, these liposomes positively modulated sclerostin, bone morphogenetic protein-2, receptor activator of nuclear factor kappa beta/osteoprotegerin ratio and other bone turnover biomarkers. The findings demonstrate that aspartic acid conjugate (PAL-DPPE)-based bone-targeted liposomes of linagliptin hold promise for the treatment of osteoporosis. Moreover, the possible mechanistic pathways involved here is Wnt and AMPK pathway.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-12"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2467089","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis is a common metabolic bone disorder that requires new treatment strategies. Linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, is a proven osteogenic agent in diabetes-linked bone loss. However, poor solubility, low oral bioavailability and inadequate bone-targeting limit its use in osteoporosis. We have successfully developed the bone-targeted liposomes of linagliptin using an aspartic acid conjugate, that is poly (aspartic acid-co-lactide)-1,2-dipalmitoyl-sn-glycero-3-phospho ethanolamine (PAL-DPPE), which was prior synthesised and identified using FTIR and NMR. Liposomes were evaluated for particle size, encapsulation efficacy, drug loading and release study in addition to in vitro hydroxyapatite binding ability. To determine the anti-osteoporosis effect of liposomes, in vivo testing was performed in glucocorticoid-induced osteoporosis model in mice. Bone targeted liposomes of linagliptin having particle size of 281.7 nm and hydroxyapatite affinity of 89% significantly improved the bone architecture parameters and bone mineral density in micro-computed tomography analysis. Further, these liposomes positively modulated sclerostin, bone morphogenetic protein-2, receptor activator of nuclear factor kappa beta/osteoprotegerin ratio and other bone turnover biomarkers. The findings demonstrate that aspartic acid conjugate (PAL-DPPE)-based bone-targeted liposomes of linagliptin hold promise for the treatment of osteoporosis. Moreover, the possible mechanistic pathways involved here is Wnt and AMPK pathway.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.