High-Fidelity MRI Assessment of Cerebral Perfusion in Healthy Neonates Less Than 1 Week of Age.

IF 3.3 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Magnetic Resonance Imaging Pub Date : 2025-02-13 DOI:10.1002/jmri.29740
Zhiyi Hu, Dengrong Jiang, Jennifer Shepard, Yuto Uchida, Kenichi Oishi, Wen Shi, Peiying Liu, Doris Lin, Vivek Yedavalli, Aylin Tekes, William Christopher Golden, Hanzhang Lu
{"title":"High-Fidelity MRI Assessment of Cerebral Perfusion in Healthy Neonates Less Than 1 Week of Age.","authors":"Zhiyi Hu, Dengrong Jiang, Jennifer Shepard, Yuto Uchida, Kenichi Oishi, Wen Shi, Peiying Liu, Doris Lin, Vivek Yedavalli, Aylin Tekes, William Christopher Golden, Hanzhang Lu","doi":"10.1002/jmri.29740","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Perfusion imaging of the brain has important clinical applications in detecting neurological abnormalities in neonates. However, such tools have not been available to date. Although arterial-spin-labeling (ASL) MRI is a powerful noninvasive tool to measure perfusion, its application in neonates has encountered obstacles related to low signal-to-noise ratio (SNR), large-vessel contaminations, and lack of technical development studies.</p><p><strong>Purpose: </strong>To systematically develop and optimize ASL perfusion MRI in healthy neonates under 1 week of age.</p><p><strong>Study type: </strong>Prospective.</p><p><strong>Subjects: </strong>Thirty-two healthy term neonates (19 female; postnatal age 1.9 ± 0.7 days).</p><p><strong>Field strength/sequence: </strong>3.0 T; T<sub>2</sub>-weighted half-Fourier single-shot turbo-spin-echo (HASTE) imaging, single-delay and multi-delay 3D gradient-and-spin-echo (GRASE) large-vessel-suppression pseudo-continuous ASL (LVS-pCASL).</p><p><strong>Assessment: </strong>Three studies were conducted. First, an LVS-pCASL MRI sequence was developed to suppress large-vessel spurious signals in neonatal pCASL. Second, multiple post-labeling delays (PLDs) LVS-pCASL were employed to simultaneously estimate normative cerebral blood flow (CBF) and arterial transit time (ATT) in neonates. Third, an enhanced background-suppression (BS) scheme was developed to increase the SNR of neonatal pCASL.</p><p><strong>Statistical tests: </strong>Repeated measure analysis-of-variance, paired t-test, spatial intraclass-correlation-coefficient (ICC), and voxel-wise coefficient-of-variation (CoV). P-value <0.05 was considered significant.</p><p><strong>Results: </strong>LVS-pCASL reduced spurious ASL signals, making the CBF images more homogenous and significantly reducing the temporal variation of CBF measurements by 58.0% when compared to the standard pCASL. Multi-PLD ASL yielded ATT and CBF maps showing a longer ATT and lower CBF in the white matter relative to the gray matter. The highest CBF was observed in basal ganglia and thalamus (10.4 ± 1.9 mL/100 g/min). Enhanced BS resulted in significantly higher test-retest reproducibility (ICC = 0.90 ± 0.04, CoV = 8.4 ± 1.2%) when compared to regular BS (ICC = 0.59 ± 0.12, CoV = 23.6 ± 3.8%).</p><p><strong>Data conclusion: </strong>We devised an ASL method that can generate whole-brain CBF images in 4 minutes with a test-retest image ICC of 0.9. This technique holds potential for studying neonatal brain diseases involving perfusion abnormalities.</p><p><strong>Plain language summary: </strong>MR imaging of cerebral blood flow in neonates remains a challenge due to low blood flow rates and confounding factors from large blood vessels. This study systematically developed an advanced MRI technique to enhance the reliability of perfusion measurements in neonates. The proposed method reduced signal artifacts from large blood vessels and improved the signal-to-noise ratio of brain perfusion images. With this approach, whole-brain neonatal perfusion can be measured in 4 minutes with excellent reproducibility. This technique may provide a useful tool for studying neonatal brain maturation and detecting perfusion abnormalities in diseases.</p><p><strong>Evidence level: </strong>2 TECHNICAL EFFICACY: Stage 1.</p>","PeriodicalId":16140,"journal":{"name":"Journal of Magnetic Resonance Imaging","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29740","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Perfusion imaging of the brain has important clinical applications in detecting neurological abnormalities in neonates. However, such tools have not been available to date. Although arterial-spin-labeling (ASL) MRI is a powerful noninvasive tool to measure perfusion, its application in neonates has encountered obstacles related to low signal-to-noise ratio (SNR), large-vessel contaminations, and lack of technical development studies.

Purpose: To systematically develop and optimize ASL perfusion MRI in healthy neonates under 1 week of age.

Study type: Prospective.

Subjects: Thirty-two healthy term neonates (19 female; postnatal age 1.9 ± 0.7 days).

Field strength/sequence: 3.0 T; T2-weighted half-Fourier single-shot turbo-spin-echo (HASTE) imaging, single-delay and multi-delay 3D gradient-and-spin-echo (GRASE) large-vessel-suppression pseudo-continuous ASL (LVS-pCASL).

Assessment: Three studies were conducted. First, an LVS-pCASL MRI sequence was developed to suppress large-vessel spurious signals in neonatal pCASL. Second, multiple post-labeling delays (PLDs) LVS-pCASL were employed to simultaneously estimate normative cerebral blood flow (CBF) and arterial transit time (ATT) in neonates. Third, an enhanced background-suppression (BS) scheme was developed to increase the SNR of neonatal pCASL.

Statistical tests: Repeated measure analysis-of-variance, paired t-test, spatial intraclass-correlation-coefficient (ICC), and voxel-wise coefficient-of-variation (CoV). P-value <0.05 was considered significant.

Results: LVS-pCASL reduced spurious ASL signals, making the CBF images more homogenous and significantly reducing the temporal variation of CBF measurements by 58.0% when compared to the standard pCASL. Multi-PLD ASL yielded ATT and CBF maps showing a longer ATT and lower CBF in the white matter relative to the gray matter. The highest CBF was observed in basal ganglia and thalamus (10.4 ± 1.9 mL/100 g/min). Enhanced BS resulted in significantly higher test-retest reproducibility (ICC = 0.90 ± 0.04, CoV = 8.4 ± 1.2%) when compared to regular BS (ICC = 0.59 ± 0.12, CoV = 23.6 ± 3.8%).

Data conclusion: We devised an ASL method that can generate whole-brain CBF images in 4 minutes with a test-retest image ICC of 0.9. This technique holds potential for studying neonatal brain diseases involving perfusion abnormalities.

Plain language summary: MR imaging of cerebral blood flow in neonates remains a challenge due to low blood flow rates and confounding factors from large blood vessels. This study systematically developed an advanced MRI technique to enhance the reliability of perfusion measurements in neonates. The proposed method reduced signal artifacts from large blood vessels and improved the signal-to-noise ratio of brain perfusion images. With this approach, whole-brain neonatal perfusion can be measured in 4 minutes with excellent reproducibility. This technique may provide a useful tool for studying neonatal brain maturation and detecting perfusion abnormalities in diseases.

Evidence level: 2 TECHNICAL EFFICACY: Stage 1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.70
自引率
6.80%
发文量
494
审稿时长
2 months
期刊介绍: The Journal of Magnetic Resonance Imaging (JMRI) is an international journal devoted to the timely publication of basic and clinical research, educational and review articles, and other information related to the diagnostic applications of magnetic resonance.
期刊最新文献
High Impact Clinical Applications of Cardiac Magnetic Resonance Imaging in Women: A Review. High-Fidelity MRI Assessment of Cerebral Perfusion in Healthy Neonates Less Than 1 Week of Age. Editorial for "Diagnosis of Sacroiliitis Through Semi-Supervised Segmentation and Radiomics Feature Analysis of MRI Images". Myocardial MRI Cine Radiomics: A Novel Approach to Risk-Stratification for Major Adverse Cardiovascular Events in Patients With ST-Elevation Myocardial Infarction. Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1