The tiny-leaved orchid Disperis neilgherrensis primarily obtains carbon from decaying litter via saprotrophic Ceratobasidium.

IF 3.3 2区 生物学 Q2 MYCOLOGY Mycorrhiza Pub Date : 2025-02-13 DOI:10.1007/s00572-025-01183-x
Kenji Suetsugu, Ryuta Yagi, Hidehito Okada, Jun Matsubayashi
{"title":"The tiny-leaved orchid Disperis neilgherrensis primarily obtains carbon from decaying litter via saprotrophic Ceratobasidium.","authors":"Kenji Suetsugu, Ryuta Yagi, Hidehito Okada, Jun Matsubayashi","doi":"10.1007/s00572-025-01183-x","DOIUrl":null,"url":null,"abstract":"<p><p>While most green orchids establish associations with non-ectomycorrhizal rhizoctonias belonging to Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae, fully mycoheterotrophic orchids-excluding albino mutants-primarily depend on either ectomycorrhizal fungi or saprotrophic non-rhizoctonia fungi. This suggests that non-ectomycorrhizal rhizoctonias may be unable to meet the carbon demands of adult orchids that exhibit a high degree of mycoheterotrophy. To understand the physiological ecology of Disperis neilgherrensis, an orchid species with reduced leaves growing in decaying litter from non-ectomycorrhizal trees, we employed molecular and stable isotope analyses to identify its mycorrhizal partners and ultimate nutritional sources at two populations on Ishigaki Island, Japan. Molecular barcoding techniques revealed that D. neilgherrensis forms exclusive associations with non-ectomycorrhizal Ceratobasidiaceae fungi. The Disperis specimens exhibited δ<sup>13</sup>C and δ<sup>15</sup>N isotopic values similar to those found in fully mycoheterotrophic orchids that exploit litter-decaying fungi. Furthermore, the pelotons of D. neilgherrensis showed significantly elevated δ<sup>13</sup>C values similar to saprotrophic non-rhizoctonia fungi. Our findings indicate that D. neilgherrensis primarily obtains its carbon from decaying litter through a specialized relationship with non-ECM Ceratobasidiaceae. Given that saprotrophic Ceratobasidiaceae facilitate nearly fully mycoheterotrophic growth in D. neilgherrensis, at least under warm and humid conditions, it is plausible that other (nearly) fully mycoheterotrophic tropical orchids also meet their carbon requirements through associations with saprotrophic rhizoctonias.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 1","pages":"9"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01183-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

While most green orchids establish associations with non-ectomycorrhizal rhizoctonias belonging to Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae, fully mycoheterotrophic orchids-excluding albino mutants-primarily depend on either ectomycorrhizal fungi or saprotrophic non-rhizoctonia fungi. This suggests that non-ectomycorrhizal rhizoctonias may be unable to meet the carbon demands of adult orchids that exhibit a high degree of mycoheterotrophy. To understand the physiological ecology of Disperis neilgherrensis, an orchid species with reduced leaves growing in decaying litter from non-ectomycorrhizal trees, we employed molecular and stable isotope analyses to identify its mycorrhizal partners and ultimate nutritional sources at two populations on Ishigaki Island, Japan. Molecular barcoding techniques revealed that D. neilgherrensis forms exclusive associations with non-ectomycorrhizal Ceratobasidiaceae fungi. The Disperis specimens exhibited δ13C and δ15N isotopic values similar to those found in fully mycoheterotrophic orchids that exploit litter-decaying fungi. Furthermore, the pelotons of D. neilgherrensis showed significantly elevated δ13C values similar to saprotrophic non-rhizoctonia fungi. Our findings indicate that D. neilgherrensis primarily obtains its carbon from decaying litter through a specialized relationship with non-ECM Ceratobasidiaceae. Given that saprotrophic Ceratobasidiaceae facilitate nearly fully mycoheterotrophic growth in D. neilgherrensis, at least under warm and humid conditions, it is plausible that other (nearly) fully mycoheterotrophic tropical orchids also meet their carbon requirements through associations with saprotrophic rhizoctonias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
期刊最新文献
Bacterial community in the hyphosphere of an arbuscular mycorrhizal fungus differs from that in the surrounding environment and is influenced by hyphal disruption. The tiny-leaved orchid Disperis neilgherrensis primarily obtains carbon from decaying litter via saprotrophic Ceratobasidium. Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress. AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding. Lead (Pb) tolerance in the ectomycorrhizal fungi Suillus brevipes and S. tomentosus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1