{"title":"A Modified Preassigned Finite-Time Control Scheme for Spacecraft Large-Angle Attitude Maneuvering and Tracking.","authors":"Xudong Ma, Yuan Liu, Yi Cheng, Kun Zhao","doi":"10.3390/s25030986","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the problem of large-angle attitude maneuvering and tracking control for rigid spacecraft, considering angular velocity and torque constraints, actuator faults, and external disturbances. First, a sliding-mode-like vector is constructed to guarantee the satisfaction of the angular velocity constraints. A modified preassigned finite-time function, which can adaptively adjust the boundaries, is then proposed to constrain the sliding-mode-like vector. The controller is designed to stabilize the closed-loop system using a barrier Lyapunov function. Additionally, actuator saturation is compensated adaptively, and the system's lumped disturbance is estimated using a fixed-time disturbance observer. Finally, the practically preassigned finite-time stability of the closed-loop system is demonstrated. In practical applications, the proposed controller can guarantee transient and steady-state performance, prevent excessive angular velocity, and ensure compliance with the physical limitations of the actuators. Simulation results are provided to demonstrate the effectiveness of the proposed controller.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821070/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25030986","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the problem of large-angle attitude maneuvering and tracking control for rigid spacecraft, considering angular velocity and torque constraints, actuator faults, and external disturbances. First, a sliding-mode-like vector is constructed to guarantee the satisfaction of the angular velocity constraints. A modified preassigned finite-time function, which can adaptively adjust the boundaries, is then proposed to constrain the sliding-mode-like vector. The controller is designed to stabilize the closed-loop system using a barrier Lyapunov function. Additionally, actuator saturation is compensated adaptively, and the system's lumped disturbance is estimated using a fixed-time disturbance observer. Finally, the practically preassigned finite-time stability of the closed-loop system is demonstrated. In practical applications, the proposed controller can guarantee transient and steady-state performance, prevent excessive angular velocity, and ensure compliance with the physical limitations of the actuators. Simulation results are provided to demonstrate the effectiveness of the proposed controller.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.