Elhadj Moustapha Diallo, Rong Chai, Abuzar B M Adam, Gezahegn Abdissa Bayessa, Chengchao Liang, Qianbin Chen
{"title":"Long-Term Energy Consumption Minimization Based on UAV Joint Content Fetching and Trajectory Design.","authors":"Elhadj Moustapha Diallo, Rong Chai, Abuzar B M Adam, Gezahegn Abdissa Bayessa, Chengchao Liang, Qianbin Chen","doi":"10.3390/s25030898","DOIUrl":null,"url":null,"abstract":"<p><p>Caching the contents of unmanned aerial vehicles (UAVs) could significantly improve the content fetching performance of request users (RUs). In this paper, we study UAV trajectory design, content fetching, power allocation, and content placement problems in multi-UAV-aided networks, where multiple UAVs can transmit contents to the assigned RUs. To minimize the energy consumption of the system, we develop a constrained optimization problem that simultaneously designs UAV trajectory, power allocation, content fetching, and content placement. Since the original minimization problem is a mixed-integer nonlinear programming (MINLP) problem that is difficult to solve, the optimization problem was first transformed into a semi-Markov decision process (SMDP). Next, we developed a new technique to solve the joint optimization problem: option-based hierarchical deep reinforcement learning (OHDRL). We define UAV trajectory planning and power allocation as the low-level action space and content placement and content fetching as the high-level option space. Stochastic optimization can be handled using this strategy, where the agent makes high-level option selections, and the action is carried out at a low level based on the chosen option's policy. When comparing the proposed approach to the current technique, the numerical results show that it can produce more consistent learning performance and reduced energy consumption.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820502/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25030898","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Caching the contents of unmanned aerial vehicles (UAVs) could significantly improve the content fetching performance of request users (RUs). In this paper, we study UAV trajectory design, content fetching, power allocation, and content placement problems in multi-UAV-aided networks, where multiple UAVs can transmit contents to the assigned RUs. To minimize the energy consumption of the system, we develop a constrained optimization problem that simultaneously designs UAV trajectory, power allocation, content fetching, and content placement. Since the original minimization problem is a mixed-integer nonlinear programming (MINLP) problem that is difficult to solve, the optimization problem was first transformed into a semi-Markov decision process (SMDP). Next, we developed a new technique to solve the joint optimization problem: option-based hierarchical deep reinforcement learning (OHDRL). We define UAV trajectory planning and power allocation as the low-level action space and content placement and content fetching as the high-level option space. Stochastic optimization can be handled using this strategy, where the agent makes high-level option selections, and the action is carried out at a low level based on the chosen option's policy. When comparing the proposed approach to the current technique, the numerical results show that it can produce more consistent learning performance and reduced energy consumption.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.