{"title":"Analysis of Structural Design Variations in MEMS Capacitive Microphones.","authors":"Tzu-Huan Peng, Huei-Ju Hsu, Jin H Huang","doi":"10.3390/s25030900","DOIUrl":null,"url":null,"abstract":"<p><p>Different microstructures significantly affect the acoustic performance of MEMS capacitive microphones, particularly in key specifications of interest. This paper presents several microstructures, including rib-reinforced backplates, suspended diaphragms, and outer vent holes. Three MEMS microphone designs were implemented to analyze the impact of these microstructures. Equivalent circuit models corresponding to each design were constructed to simulate specifications such as sensitivity, signal-to-noise ratio (SNR), and low corner frequency (LCF), which were validated through experimental measurements. Finite Element Analysis (FEA) was also employed to calculate the acoustic damping of certain microstructures, the mechanical lumped parameters of the diaphragm, and the pre-deformation of the MEMS structure. A compressed air test (CAT) was conducted to evaluate the mechanical reliability of microphone samples. The results of simulations and measurements indicate that rib-reinforced backplates effectively improve microphone reliability, increasing the pass rate in CAT. Compared to fully clamped diaphragms, suspended diaphragms exhibit higher mechanical compliance, which enhances SNR performance but reduces AOP. Outer vent holes can achieve similar functionality to diaphragm vent holes, but their impact on improving AOP requires further design and testing.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820240/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25030900","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Different microstructures significantly affect the acoustic performance of MEMS capacitive microphones, particularly in key specifications of interest. This paper presents several microstructures, including rib-reinforced backplates, suspended diaphragms, and outer vent holes. Three MEMS microphone designs were implemented to analyze the impact of these microstructures. Equivalent circuit models corresponding to each design were constructed to simulate specifications such as sensitivity, signal-to-noise ratio (SNR), and low corner frequency (LCF), which were validated through experimental measurements. Finite Element Analysis (FEA) was also employed to calculate the acoustic damping of certain microstructures, the mechanical lumped parameters of the diaphragm, and the pre-deformation of the MEMS structure. A compressed air test (CAT) was conducted to evaluate the mechanical reliability of microphone samples. The results of simulations and measurements indicate that rib-reinforced backplates effectively improve microphone reliability, increasing the pass rate in CAT. Compared to fully clamped diaphragms, suspended diaphragms exhibit higher mechanical compliance, which enhances SNR performance but reduces AOP. Outer vent holes can achieve similar functionality to diaphragm vent holes, but their impact on improving AOP requires further design and testing.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.