Meijiao Mao, Zhiwen Jiang, Zhifei Tan, Wenqiang Xiao, Guangchao Du
{"title":"Tilting Pad Thrust Bearing Fault Diagnosis Based on Acoustic Emission Signal and Modified Multi-Feature Fusion Convolutional Neural Network.","authors":"Meijiao Mao, Zhiwen Jiang, Zhifei Tan, Wenqiang Xiao, Guangchao Du","doi":"10.3390/s25030904","DOIUrl":null,"url":null,"abstract":"<p><p>Tilting pad thrust bearings are widely utilized in large rotating machinery such as steam turbines and hydraulic turbines. Defects in their shaft tiles directly impact lubrication characteristics, thereby influencing the overall safety performance of the entire unit. To address this issue, this paper presents a fault diagnosis method for tilting pad thrust bearings using a modified multi-feature fused convolutional neural network (MMFCNN). Initially, an experimental bench for diagnosing faults in tilting pad thrust bearings was developed to collect multi-channel acoustic emission (AE) signals from both normal and faulty pads. Subsequently, the squeeze-and-excitation (SE) module was employed to reallocate the weights of each channel and fuse the features of multi-channel signals. Learning was then conducted on the signal fused with multiple features using the inverse-add module and spanning convolution. Next, a comparative analysis was carried out among the CNN1D, ResNet, and DFCNN models, and the MMFCNN model proposed in this study. The results show that under consistent operating conditions, the MMFCNN model achieves an average fault diagnosis accuracy of 99.58% when utilizing AE signal data from tilting pad thrust bearings in four states as inputs. Furthermore, when different operational conditions are introduced, the MMFCNN model also outperforms other models in terms of accuracy.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25030904","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tilting pad thrust bearings are widely utilized in large rotating machinery such as steam turbines and hydraulic turbines. Defects in their shaft tiles directly impact lubrication characteristics, thereby influencing the overall safety performance of the entire unit. To address this issue, this paper presents a fault diagnosis method for tilting pad thrust bearings using a modified multi-feature fused convolutional neural network (MMFCNN). Initially, an experimental bench for diagnosing faults in tilting pad thrust bearings was developed to collect multi-channel acoustic emission (AE) signals from both normal and faulty pads. Subsequently, the squeeze-and-excitation (SE) module was employed to reallocate the weights of each channel and fuse the features of multi-channel signals. Learning was then conducted on the signal fused with multiple features using the inverse-add module and spanning convolution. Next, a comparative analysis was carried out among the CNN1D, ResNet, and DFCNN models, and the MMFCNN model proposed in this study. The results show that under consistent operating conditions, the MMFCNN model achieves an average fault diagnosis accuracy of 99.58% when utilizing AE signal data from tilting pad thrust bearings in four states as inputs. Furthermore, when different operational conditions are introduced, the MMFCNN model also outperforms other models in terms of accuracy.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.