Identifying Misinformation About Unproven Cancer Treatments on Social Media Using User-Friendly Linguistic Characteristics: Content Analysis.

IF 3.5 Q1 HEALTH CARE SCIENCES & SERVICES JMIR infodemiology Pub Date : 2025-02-12 DOI:10.2196/62703
Ilona Fridman, Dahlia Boyles, Ria Chheda, Carrie Baldwin-SoRelle, Angela B Smith, Jennifer Elston Lafata
{"title":"Identifying Misinformation About Unproven Cancer Treatments on Social Media Using User-Friendly Linguistic Characteristics: Content Analysis.","authors":"Ilona Fridman, Dahlia Boyles, Ria Chheda, Carrie Baldwin-SoRelle, Angela B Smith, Jennifer Elston Lafata","doi":"10.2196/62703","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Health misinformation, prevalent in social media, poses a significant threat to individuals, particularly those dealing with serious illnesses such as cancer. The current recommendations for users on how to avoid cancer misinformation are challenging because they require users to have research skills.</p><p><strong>Objective: </strong>This study addresses this problem by identifying user-friendly characteristics of misinformation that could be easily observed by users to help them flag misinformation on social media.</p><p><strong>Methods: </strong>Using a structured review of the literature on algorithmic misinformation detection across political, social, and computer science, we assembled linguistic characteristics associated with misinformation. We then collected datasets by mining X (previously known as Twitter) posts using keywords related to unproven cancer therapies and cancer center usernames. This search, coupled with manual labeling, allowed us to create a dataset with misinformation and 2 control datasets. We used natural language processing to model linguistic characteristics within these datasets. Two experiments with 2 control datasets used predictive modeling and Lasso regression to evaluate the effectiveness of linguistic characteristics in identifying misinformation.</p><p><strong>Results: </strong>User-friendly linguistic characteristics were extracted from 88 papers. The short-listed characteristics did not yield optimal results in the first experiment but predicted misinformation with an accuracy of 73% in the second experiment, in which posts with misinformation were compared with posts from health care systems. The linguistic characteristics that consistently negatively predicted misinformation included tentative language, location, URLs, and hashtags, while numbers, absolute language, and certainty expressions consistently predicted misinformation positively.</p><p><strong>Conclusions: </strong>This analysis resulted in user-friendly recommendations, such as exercising caution when encountering social media posts featuring unwavering assurances or specific numbers lacking references. Future studies should test the efficacy of the recommendations among information users.</p>","PeriodicalId":73554,"journal":{"name":"JMIR infodemiology","volume":"5 ","pages":"e62703"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR infodemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/62703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Health misinformation, prevalent in social media, poses a significant threat to individuals, particularly those dealing with serious illnesses such as cancer. The current recommendations for users on how to avoid cancer misinformation are challenging because they require users to have research skills.

Objective: This study addresses this problem by identifying user-friendly characteristics of misinformation that could be easily observed by users to help them flag misinformation on social media.

Methods: Using a structured review of the literature on algorithmic misinformation detection across political, social, and computer science, we assembled linguistic characteristics associated with misinformation. We then collected datasets by mining X (previously known as Twitter) posts using keywords related to unproven cancer therapies and cancer center usernames. This search, coupled with manual labeling, allowed us to create a dataset with misinformation and 2 control datasets. We used natural language processing to model linguistic characteristics within these datasets. Two experiments with 2 control datasets used predictive modeling and Lasso regression to evaluate the effectiveness of linguistic characteristics in identifying misinformation.

Results: User-friendly linguistic characteristics were extracted from 88 papers. The short-listed characteristics did not yield optimal results in the first experiment but predicted misinformation with an accuracy of 73% in the second experiment, in which posts with misinformation were compared with posts from health care systems. The linguistic characteristics that consistently negatively predicted misinformation included tentative language, location, URLs, and hashtags, while numbers, absolute language, and certainty expressions consistently predicted misinformation positively.

Conclusions: This analysis resulted in user-friendly recommendations, such as exercising caution when encountering social media posts featuring unwavering assurances or specific numbers lacking references. Future studies should test the efficacy of the recommendations among information users.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Identifying Misinformation About Unproven Cancer Treatments on Social Media Using User-Friendly Linguistic Characteristics: Content Analysis. Visualizing YouTube Commenters' Conceptions of the US Health Care System: Semantic Network Analysis Method for Evidence-Based Policy Making. Unveiling Topics and Emotions in Arabic Tweets Surrounding the COVID-19 Pandemic: Topic Modeling and Sentiment Analysis Approach. Assessment of Reliability and Validity of Celiac Disease-Related YouTube Videos: Content Analysis. Geosocial Media's Early Warning Capabilities Across US County-Level Political Clusters: Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1