Nandini Ratne , Sakshi Jari , Manasi Tadas , Raj Katariya , Mayur Kale , Nandkishor Kotagale , Dilip Madia , Milind Umekar , Brijesh Taksande
{"title":"Neurobiological role and therapeutic potential of exercise-induced irisin in Alzheimer's disease management","authors":"Nandini Ratne , Sakshi Jari , Manasi Tadas , Raj Katariya , Mayur Kale , Nandkishor Kotagale , Dilip Madia , Milind Umekar , Brijesh Taksande","doi":"10.1016/j.arr.2025.102687","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) poses a significant obstacle in today's healthcare landscape, with limited effective treatments. Recent studies have revealed encouraging findings about how exercise-triggered irisin might help slow down the advancement of AD. Irisin, a myokine, released during physical activity, has garnered significant attention for its pleiotropic effects, extending beyond its traditional role in metabolic regulation. This review explores irisin's multifaceted potential in combating AD. Research indicates that irisin enhances synaptic plasticity, crucial for learning and memory, and exhibits neuroprotective properties that may slow AD progression by safeguarding neurons from degeneration. Additionally, irisin's ability to modulate inflammatory responses is significant, as neuroinflammation is a key feature of AD pathology. Irisin may also influence the metabolism and clearance of amyloid-beta plaques and tau tangles, hallmark pathological markers of AD. Furthermore, irisin boosts brain-derived neurotrophic factor expression, vital for neuronal health, and improves insulin glucose regulation, addressing impaired brain insulin signaling observed in AD. Exercise-induced irisin presents a non-pharmacological strategy, leveraging physical activity’s brain health benefits. Future research should focus on elucidating irisin’s mechanisms and conducting clinical trials to assess its therapeutic efficacy and safety in AD patients. Overall, irisin therapy offers a promising avenue for AD treatment, potentially slowing disease progression and enhancing cognitive function, paving the way for innovative therapeutic strategies in the fight against AD.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"105 ","pages":"Article 102687"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163725000339","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) poses a significant obstacle in today's healthcare landscape, with limited effective treatments. Recent studies have revealed encouraging findings about how exercise-triggered irisin might help slow down the advancement of AD. Irisin, a myokine, released during physical activity, has garnered significant attention for its pleiotropic effects, extending beyond its traditional role in metabolic regulation. This review explores irisin's multifaceted potential in combating AD. Research indicates that irisin enhances synaptic plasticity, crucial for learning and memory, and exhibits neuroprotective properties that may slow AD progression by safeguarding neurons from degeneration. Additionally, irisin's ability to modulate inflammatory responses is significant, as neuroinflammation is a key feature of AD pathology. Irisin may also influence the metabolism and clearance of amyloid-beta plaques and tau tangles, hallmark pathological markers of AD. Furthermore, irisin boosts brain-derived neurotrophic factor expression, vital for neuronal health, and improves insulin glucose regulation, addressing impaired brain insulin signaling observed in AD. Exercise-induced irisin presents a non-pharmacological strategy, leveraging physical activity’s brain health benefits. Future research should focus on elucidating irisin’s mechanisms and conducting clinical trials to assess its therapeutic efficacy and safety in AD patients. Overall, irisin therapy offers a promising avenue for AD treatment, potentially slowing disease progression and enhancing cognitive function, paving the way for innovative therapeutic strategies in the fight against AD.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.