Flexible Alternating-Current Electroluminescent Devices for Reliable Identification of Fingerprints.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-02-14 DOI:10.1021/acsami.4c22178
Haifei Wang, Zenan Guo, Zhaoqiang He, Guanhua Lin, Chubin He, Gang Chen, Zhengchun Peng
{"title":"Flexible Alternating-Current Electroluminescent Devices for Reliable Identification of Fingerprints.","authors":"Haifei Wang, Zenan Guo, Zhaoqiang He, Guanhua Lin, Chubin He, Gang Chen, Zhengchun Peng","doi":"10.1021/acsami.4c22178","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible bioelectronic devices, which can directly detect various external stimuli or biosignals and communicate the information to the users, have been broadly investigated due to the increasing demand for wearable devices. Among them, alternating-current electroluminescence (ACEL) devices are proposed as sensitive sensing systems for various targets, such as fingerprints. Herein, we propose a method for preparing high-performance ACEL devices by using an Ag electrode, polyethylene terephthalate (PET) substrate, FKM/EMI ionogel, and ZnS:Cu/BaTiO<sub>3</sub>/Ecoflex emissive layer. Their influence has also been studied for achieving high performances. The results demonstrate that the prepared ACEL devices can achieve high performances of emitting bright green and blue light when contacted with various ionic liquids. Significantly, they achieved good sensing performance for detecting Na<sup>+</sup> with a limit of detection at 17.1 μM in the linear range of 100-800 mM. Moreover, the ACEL devices can be used for identity recognition, as they are capable of efficient collection and distinguishing of fingerprints. Even the characteristics of fingerprints collected from bending surfaces or contaminated fingers could be distinguished by the naked eyes. Compared with commercial fingerprint devices, our ACEL devices exhibit superior performance in fingerprint identification. High-resolution and three-dimensional image analysis further validates the reliability of our ACEL devices in fingerprint collection and identification. As such, we believe that the designed ACEL devices have very promising application prospects in many fields.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22178","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible bioelectronic devices, which can directly detect various external stimuli or biosignals and communicate the information to the users, have been broadly investigated due to the increasing demand for wearable devices. Among them, alternating-current electroluminescence (ACEL) devices are proposed as sensitive sensing systems for various targets, such as fingerprints. Herein, we propose a method for preparing high-performance ACEL devices by using an Ag electrode, polyethylene terephthalate (PET) substrate, FKM/EMI ionogel, and ZnS:Cu/BaTiO3/Ecoflex emissive layer. Their influence has also been studied for achieving high performances. The results demonstrate that the prepared ACEL devices can achieve high performances of emitting bright green and blue light when contacted with various ionic liquids. Significantly, they achieved good sensing performance for detecting Na+ with a limit of detection at 17.1 μM in the linear range of 100-800 mM. Moreover, the ACEL devices can be used for identity recognition, as they are capable of efficient collection and distinguishing of fingerprints. Even the characteristics of fingerprints collected from bending surfaces or contaminated fingers could be distinguished by the naked eyes. Compared with commercial fingerprint devices, our ACEL devices exhibit superior performance in fingerprint identification. High-resolution and three-dimensional image analysis further validates the reliability of our ACEL devices in fingerprint collection and identification. As such, we believe that the designed ACEL devices have very promising application prospects in many fields.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Hf Doping for Defect and Carrier Management in Magnetron-Sputtered Tin Oxide Electron Transport Layers for Perovskite Solar Cells Tunable Multicolor in Heterojunction Ln(BTB) Fast Prepared by Liquid Plasma with In Situ Spectral Monitoring for Anticounterfeiting Application Stretchable Strain Sensors for Real-Time Bladder Volume Monitoring Augmenting Antitumor Immune Effects through the Coactivation of cGAS-STING and NF-κB Crosstalk in Dendritic Cells and Macrophages by Engineered Manganese Ferrite Nanohybrids Oxygen Nanobubbles Enhance ICG/Fe(III)-Mediated Dual-Modal Therapy To Induce Ferroptosis in Tumor Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1