GO-Enhanced MXene Sediment-Based Inks Achieve Remarkable Oxidation Resistance and High Conductivity.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2025-02-14 DOI:10.1021/acsami.4c23060
Haofan Wen, Yunfa Si, Zibo Chen, Yitong Xin, Shaowen Cao, Cheng Chen, Haoran Zu, Daping He
{"title":"GO-Enhanced MXene Sediment-Based Inks Achieve Remarkable Oxidation Resistance and High Conductivity.","authors":"Haofan Wen, Yunfa Si, Zibo Chen, Yitong Xin, Shaowen Cao, Cheng Chen, Haoran Zu, Daping He","doi":"10.1021/acsami.4c23060","DOIUrl":null,"url":null,"abstract":"<p><p>MXenes are emerging materials renowned for their exceptional conductivity, abundant functional groups, and excellent solution processability, making them highly promising as conductive-additive-free inks for flexible electronic devices. However, current preparation methods are hampered by low yields of MXene flakes so that substantial waste MXene sediments (MS) are generated. Here, we demonstrate a type of conductive ink with appropriate rheological properties, namely MG inks formulated using MS and graphene oxide (GO), for screen-printing frequency selective surface (FSS). GO facilitates interlayer interactions by covalently cross-linking with MXene flakes, resulting in a denser structure and significantly enhancing the conductivity of the best-performing MG-based ink to 849 S cm<sup>-1</sup>. Additionally, GO serves as a binder to considerably improve the rheological properties of MS, thus enabling high-quality printing on various substrates. The close stacking of MS and GO not only improves the oxidation resistance but also maintains conductivity above 97% even after 60 days. Furthermore, the MG-based FSS produced via straightforward screen printing demonstrates excellent performance and retains its functionality after 90 days of operation. This MS-based ink formulation represents a strategy of \"turning trash into treasure\" and highlights the potential of MS for the next generation of electronic devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c23060","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes are emerging materials renowned for their exceptional conductivity, abundant functional groups, and excellent solution processability, making them highly promising as conductive-additive-free inks for flexible electronic devices. However, current preparation methods are hampered by low yields of MXene flakes so that substantial waste MXene sediments (MS) are generated. Here, we demonstrate a type of conductive ink with appropriate rheological properties, namely MG inks formulated using MS and graphene oxide (GO), for screen-printing frequency selective surface (FSS). GO facilitates interlayer interactions by covalently cross-linking with MXene flakes, resulting in a denser structure and significantly enhancing the conductivity of the best-performing MG-based ink to 849 S cm-1. Additionally, GO serves as a binder to considerably improve the rheological properties of MS, thus enabling high-quality printing on various substrates. The close stacking of MS and GO not only improves the oxidation resistance but also maintains conductivity above 97% even after 60 days. Furthermore, the MG-based FSS produced via straightforward screen printing demonstrates excellent performance and retains its functionality after 90 days of operation. This MS-based ink formulation represents a strategy of "turning trash into treasure" and highlights the potential of MS for the next generation of electronic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Hf Doping for Defect and Carrier Management in Magnetron-Sputtered Tin Oxide Electron Transport Layers for Perovskite Solar Cells Tunable Multicolor in Heterojunction Ln(BTB) Fast Prepared by Liquid Plasma with In Situ Spectral Monitoring for Anticounterfeiting Application Stretchable Strain Sensors for Real-Time Bladder Volume Monitoring Augmenting Antitumor Immune Effects through the Coactivation of cGAS-STING and NF-κB Crosstalk in Dendritic Cells and Macrophages by Engineered Manganese Ferrite Nanohybrids Oxygen Nanobubbles Enhance ICG/Fe(III)-Mediated Dual-Modal Therapy To Induce Ferroptosis in Tumor Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1