Pharmacokinetic and Pharmacodynamics of Clofazimine Nano-in-Microparticles: Enhanced Brain Delivery and CNS Tuberculosis Amelioration via Intranasal Administration.

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2025-02-13 DOI:10.1021/acsinfecdis.4c00767
Krishna Jadhav, Agrim Jhilta, Raghuraj Singh, Swarnima Negi, Shweta Sharma, Rahul Shukla, Amit Kumar Singh, Rahul Kumar Verma
{"title":"Pharmacokinetic and Pharmacodynamics of Clofazimine Nano-in-Microparticles: Enhanced Brain Delivery and CNS Tuberculosis Amelioration via Intranasal Administration.","authors":"Krishna Jadhav, Agrim Jhilta, Raghuraj Singh, Swarnima Negi, Shweta Sharma, Rahul Shukla, Amit Kumar Singh, Rahul Kumar Verma","doi":"10.1021/acsinfecdis.4c00767","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycobacterium tuberculosis</i> (Mtb) demonstrates a proclivity for infecting extrapulmonary sites, notably the brain. Treating these extrapulmonary tuberculosis (TB) manifestations is challenging due to the difficulty of drug delivery across the blood-brain barrier. Clofazimine (CLF) has exhibited promising activity against Mtb, including multidrug-resistant variants, in vitro and in preclinical animal models. However, its clinical implication is restricted owing to poor physicochemical and pharmacokinetic properties. This study aims to develop CLF nano-in-microparticles (CLF-NIMs) for brain drug delivery for central nervous system TB (CNS-TB) treatment via the intranasal route. Simultaneously, the potential dissemination of TB bacilli to the brain was investigated. Following treatment, colony-forming unit (CFU) enumeration was conducted in both the brain and lung tissues to assess mycobacterial burden. Concurrently, drug concentrations were quantified in serum, brain, and lung tissue, enabling a comprehensive evaluation of pharmacokinetics and tissue-specific drug distribution. In pharmacokinetic investigations of CLF-NIMs, significant accumulation of CLF was observed in brain tissue compared to orally administered CLF, surpassing the minimum inhibitory concentration of CLF. In a murine CNS-TB model, intranasal insufflation of CLF-NIMs for 4 weeks led to a substantial reduction (∼0.99 ± 0.57 Log10CFU/gram) in CFU count in the brain compared to oral administration of CLF (2.45 ± 0.47 Log10CFU/gram). These promising preclinical results indicate that CLF-NIMs are well-tolerated and exhibit significant anti-TB activity in a murine CNS-TB model.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mycobacterium tuberculosis (Mtb) demonstrates a proclivity for infecting extrapulmonary sites, notably the brain. Treating these extrapulmonary tuberculosis (TB) manifestations is challenging due to the difficulty of drug delivery across the blood-brain barrier. Clofazimine (CLF) has exhibited promising activity against Mtb, including multidrug-resistant variants, in vitro and in preclinical animal models. However, its clinical implication is restricted owing to poor physicochemical and pharmacokinetic properties. This study aims to develop CLF nano-in-microparticles (CLF-NIMs) for brain drug delivery for central nervous system TB (CNS-TB) treatment via the intranasal route. Simultaneously, the potential dissemination of TB bacilli to the brain was investigated. Following treatment, colony-forming unit (CFU) enumeration was conducted in both the brain and lung tissues to assess mycobacterial burden. Concurrently, drug concentrations were quantified in serum, brain, and lung tissue, enabling a comprehensive evaluation of pharmacokinetics and tissue-specific drug distribution. In pharmacokinetic investigations of CLF-NIMs, significant accumulation of CLF was observed in brain tissue compared to orally administered CLF, surpassing the minimum inhibitory concentration of CLF. In a murine CNS-TB model, intranasal insufflation of CLF-NIMs for 4 weeks led to a substantial reduction (∼0.99 ± 0.57 Log10CFU/gram) in CFU count in the brain compared to oral administration of CLF (2.45 ± 0.47 Log10CFU/gram). These promising preclinical results indicate that CLF-NIMs are well-tolerated and exhibit significant anti-TB activity in a murine CNS-TB model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氯唑明纳米微粒的药代动力学和药效学:通过鼻内给药增强脑部给药和改善中枢神经系统结核病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Aptamer-Based Diagnosis for Plasmodium vivax Specific Malaria. Fluorescence Lifetime Imaging Detects Long-Lifetime Signal Associated with Reduced Pyocyanin at the Surface of Pseudomonas aeruginosa Biofilms and in Cross-Feeding Conditions. Treponema pallidum Flagellin FlaB3 Activates Inflammation and Inhibits Autophagy in HMC3 Cells via the TLR4 Pathway. Teixobactin: A Resistance-Evading Antibiotic for Treating Anthrax. C7-Substituted Quinolines as Potent Inhibitors of AdeG Efflux Pumps in Acinetobacter baumannii.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1