Tayeb Kakeshpour, John M Louis, Peter J Walter, Ad Bax
{"title":"Chemical Analysis of Deep-Lung Fluid Derived from Exhaled Breath Particles.","authors":"Tayeb Kakeshpour, John M Louis, Peter J Walter, Ad Bax","doi":"10.1021/acs.analchem.4c06422","DOIUrl":null,"url":null,"abstract":"<p><p>Breath particles generated deep within the lung provide noninvasive access to sampling nonvolatiles in peripheral airway lining fluid. However, background contamination, their variable production among subjects, together with a huge unknown dilution when using the common breath condensate method for collection has limited their use for quantitative biomarker analysis. Instead, we first capture and dry the particles in a flexible chamber followed by accurate optical particle characterization during their collection for chemical analysis. By decoupling breathing and aerosol sampling airflows, this sequential approach not only accommodates all types of breathing routines but also enables the use of a variety of aerosol samplers for downstream biomarker analysis. Using <sup>23</sup>Na NMR, we measured 0.66 M Na in dry particles collected on a filter, which suggests that dehydration reduces their volume by a factor of ∼ 5.5 based on known Na levels in lung fluid. <sup>1</sup>H NMR revealed 0.36 and 0.68 M phosphocholine lipids in dried particles collected from two volunteers, presumably enriched to these levels relative to literature values derived from bronchoalveolar lavage fluid due to the film-bursting mechanism that underlies breath particle generation. Decoupling of breath collection and aerosol capture enabled the design of an impactor sampler with 72% efficiency. This impactor minimizes reagent and handling-related contamination associated with traditional filters by collecting dry particles directly in a microreactor for subsequent derivatization and quantification by mass spectrometry. The method is demonstrated by quantifying subnanogram amounts of urea from breath particles, corresponding to lung fluid urea concentrations consistent with literature blood plasma values.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Breath particles generated deep within the lung provide noninvasive access to sampling nonvolatiles in peripheral airway lining fluid. However, background contamination, their variable production among subjects, together with a huge unknown dilution when using the common breath condensate method for collection has limited their use for quantitative biomarker analysis. Instead, we first capture and dry the particles in a flexible chamber followed by accurate optical particle characterization during their collection for chemical analysis. By decoupling breathing and aerosol sampling airflows, this sequential approach not only accommodates all types of breathing routines but also enables the use of a variety of aerosol samplers for downstream biomarker analysis. Using 23Na NMR, we measured 0.66 M Na in dry particles collected on a filter, which suggests that dehydration reduces their volume by a factor of ∼ 5.5 based on known Na levels in lung fluid. 1H NMR revealed 0.36 and 0.68 M phosphocholine lipids in dried particles collected from two volunteers, presumably enriched to these levels relative to literature values derived from bronchoalveolar lavage fluid due to the film-bursting mechanism that underlies breath particle generation. Decoupling of breath collection and aerosol capture enabled the design of an impactor sampler with 72% efficiency. This impactor minimizes reagent and handling-related contamination associated with traditional filters by collecting dry particles directly in a microreactor for subsequent derivatization and quantification by mass spectrometry. The method is demonstrated by quantifying subnanogram amounts of urea from breath particles, corresponding to lung fluid urea concentrations consistent with literature blood plasma values.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.