The chicken embryo brings new insights into the evolutionary role of WFDC1 during amniote development

IF 2.5 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Developmental biology Pub Date : 2025-02-11 DOI:10.1016/j.ydbio.2025.02.008
Thaís Metzker-Pinto , Yen T.H. Tran , Igor Buzzatto-Leite , Lloyd Lok , Jórdan F. Sampar , Hernandes F. Carvalho , Gonzalo del Monte-Nieto , Lúcia E. Alvares
{"title":"The chicken embryo brings new insights into the evolutionary role of WFDC1 during amniote development","authors":"Thaís Metzker-Pinto ,&nbsp;Yen T.H. Tran ,&nbsp;Igor Buzzatto-Leite ,&nbsp;Lloyd Lok ,&nbsp;Jórdan F. Sampar ,&nbsp;Hernandes F. Carvalho ,&nbsp;Gonzalo del Monte-Nieto ,&nbsp;Lúcia E. Alvares","doi":"10.1016/j.ydbio.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div><em>WFDC1</em> encodes an extracellular matrix protein involved in cell proliferation, migration, and epithelial-mesenchymal transition in disease conditions. Despite this, <em>Wfdc1-null</em> mice display no discernible malformations while cattle bearing a <em>WFDC1</em> mutation present multiple ocular defects, leaving the role of <em>WFDC1</em> during embryonic development unclear. To address this, we used the chicken embryo as a model to investigate <em>WFDC1</em> developmental roles in amniotes. We performed a comparative expression analysis during chicken and mouse development, which revealed expression in ectodermal and mesodermal derivatives, with both conserved and species-specific domains. Conserved expression was observed in the eye, otic vesicle, central and peripheral nervous systems, and neural crest cells. Chicken-specific expression was identified in mesodermal structures, including the notochord, limbs and heart. However, even in the conserved sites like the eyes, <em>WFDC1</em> localizes to different retinal layers, indicating potential divergence roles in retinal development and function across species. In contrast, <em>WFDC1</em> expression in the limb buds is specific to chicken, encompassing the distal mesenchyme, interdigital membranes, and blastemas. Functional enrichment analysis links <em>WFDC1</em> to limb patterning, morphogenesis, and Wnt signaling. The species-specific differences likely stem from evolutionary changes in gene regulation, supported by differences in proximal cis-regulatory elements of the <em>WFDC1</em> loci between chicken and mouse. The complexity of <em>WFDC1</em> expression in the chicken embryo, along with <em>WFDC1</em> regulatory conservation within birds, indicates that this gene may play specific roles in avian development, possibly contributing to features specific to this lineage. Future studies using the chicken model will be valuable in further uncovering the specific roles of <em>WFDC1</em>.</div></div>","PeriodicalId":11070,"journal":{"name":"Developmental biology","volume":"521 ","pages":"Pages 96-107"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012160625000387","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

WFDC1 encodes an extracellular matrix protein involved in cell proliferation, migration, and epithelial-mesenchymal transition in disease conditions. Despite this, Wfdc1-null mice display no discernible malformations while cattle bearing a WFDC1 mutation present multiple ocular defects, leaving the role of WFDC1 during embryonic development unclear. To address this, we used the chicken embryo as a model to investigate WFDC1 developmental roles in amniotes. We performed a comparative expression analysis during chicken and mouse development, which revealed expression in ectodermal and mesodermal derivatives, with both conserved and species-specific domains. Conserved expression was observed in the eye, otic vesicle, central and peripheral nervous systems, and neural crest cells. Chicken-specific expression was identified in mesodermal structures, including the notochord, limbs and heart. However, even in the conserved sites like the eyes, WFDC1 localizes to different retinal layers, indicating potential divergence roles in retinal development and function across species. In contrast, WFDC1 expression in the limb buds is specific to chicken, encompassing the distal mesenchyme, interdigital membranes, and blastemas. Functional enrichment analysis links WFDC1 to limb patterning, morphogenesis, and Wnt signaling. The species-specific differences likely stem from evolutionary changes in gene regulation, supported by differences in proximal cis-regulatory elements of the WFDC1 loci between chicken and mouse. The complexity of WFDC1 expression in the chicken embryo, along with WFDC1 regulatory conservation within birds, indicates that this gene may play specific roles in avian development, possibly contributing to features specific to this lineage. Future studies using the chicken model will be valuable in further uncovering the specific roles of WFDC1.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Developmental biology
Developmental biology 生物-发育生物学
CiteScore
5.30
自引率
3.70%
发文量
182
审稿时长
1.5 months
期刊介绍: Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals.
期刊最新文献
Outside Front Cover Editorial Board Outside Back Cover - Graphical abstract TOC/TOC in double column/Cover image legend if applicable, Bar code, Abstracting and Indexing information Embryonic feather bud development - a keystone model for vertebrate organogenesis. The chicken embryo brings new insights into the evolutionary role of WFDC1 during amniote development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1